-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdo_rl.py
66 lines (58 loc) · 1.91 KB
/
do_rl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
import gym
import time
import numpy as np
from stable_baselines3 import DQN
from stable_baselines3 import PPO
import routes
import climber_env
if __name__ == '__main__':
#env = gym.make("MountainCar-v0")
route = routes.generate_simple_route(250, 500, step=70)
#belay_points = np.array([[40, 120, 0], [70, 200, 0], [120, 250, 0], [100, 290, 0], [30, 350, 0]])
belay_points = np.array([[40, 120, 0]])
env = climber_env.ClimberEnv(route=route, belay_points=belay_points, max_transitions=30, climb_direction="bt")
# model = DQN(
# policy="MlpPolicy",
# env=env,
# device="cpu",
# learning_rate=4e-3,
# batch_size=128,
# buffer_size=10000,
# learning_starts=10,
# gamma=0.98,
# target_update_interval=10,
# train_freq=16,
# gradient_steps=1,
# exploration_fraction=0.2,
# exploration_final_eps=0.01,
# policy_kwargs={"net_arch": [256, 256]},
# verbose=1
# )
model = PPO(
policy="MlpPolicy",
env= env,
gamma=0.98,
verbose=1,
device="cpu"
)
model.learn(total_timesteps=100000, log_interval=10000)
all_rewards = []
num_episodes = 2
for _ in range(num_episodes):
obs = env.reset()
print("new episode")
done = False
ep_rewords = []
while not done:
action, states = model.predict(obs, deterministic=True)
obs, reward, done, info = env.step(action)
ep_rewords.append(reward)
env.render()
time.sleep(1)
if done:
print("new episode")
obs = env.reset()
all_rewards.append(sum(ep_rewords))
print("Sum rewards per episode:", all_rewards)
mean_episode_reward = np.mean(all_rewards)
print("Mean reward:", mean_episode_reward, "Num episodes:", num_episodes)