-
Notifications
You must be signed in to change notification settings - Fork 200
/
Copy pathtrain_app.py
656 lines (567 loc) · 26.7 KB
/
train_app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
# vim: expandtab:ts=4:sw=4
import argparse
import numpy as np
import tensorflow as tf
import tensorflow.contrib.slim as slim
from datasets import util
import queued_trainer
import metrics
import losses
def create_default_argument_parser(dataset_name):
"""Create an argument parser with default arguments.
Parameters
----------
dataset_name : str
Name of the dataset. This value is used to set default directories.
Returns
-------
argparse.ArgumentParser
Returns an argument parser with default arguments.
"""
parser = argparse.ArgumentParser(
description="Metric trainer (%s)" % dataset_name)
parser.add_argument(
"--batch_size", help="Training batch size", default=128, type=int)
parser.add_argument(
"--learning_rate", help="Learning rate", default=1e-3, type=float)
parser.add_argument(
"--eval_log_dir",
help="Evaluation log directory (only used in mode 'evaluation').",
default="/tmp/%s_evaldir" % dataset_name)
parser.add_argument(
"--number_of_steps", help="Number of train/eval steps. If None given, "
"runs indefenitely", default=None, type=int)
parser.add_argument(
"--log_dir", help="Log and checkpoints directory.",
default="/tmp/%s_logdir" % dataset_name)
parser.add_argument(
"--loss_mode", help="One of 'cosine-softmax', 'magnet', 'triplet'",
type=str, default="cosine-softmax")
parser.add_argument(
"--mode", help="One of 'train', 'eval', 'finalize', 'freeze'.",
type=str, default="train")
parser.add_argument(
"--restore_path", help="If not None, resume training of a given "
"checkpoint (mode 'train').", default=None)
parser.add_argument(
"--run_id", help="An optional run-id. If None given, a new one is "
"created", type=str, default=None)
return parser
def to_train_kwargs(args):
"""Parse command-line training arguments.
Parameters
----------
args : argparse.Namespace
Namespace of an argument parser that was created with
create_default_argument_parser.
Returns
-------
Dict[str, T]
Returns a dictionary of named arguments to be passed on to
train_loop.
"""
kwargs_dict = {
"batch_size": args.batch_size,
"learning_rate": args.learning_rate,
"log_dir": args.log_dir,
"loss_mode": args.loss_mode,
"number_of_steps": args.number_of_steps,
"restore_path": args.restore_path,
"run_id": args.run_id,
}
return kwargs_dict
def to_eval_kwargs(args):
"""Parse command-line evaluation arguments.
Parameters
----------
args : argparse.Namespace
Namespace of an argument parser that was created with
create_default_argument_parser.
Returns
-------
Dict[str, T]
Returns a dictionary of named arguments to be passed on to
eval_loop.
"""
kwargs_dict = {
"eval_log_dir": args.eval_log_dir,
"log_dir": args.log_dir,
"loss_mode": args.loss_mode,
"run_id": args.run_id,
}
return kwargs_dict
def train_loop(preprocess_fn, network_factory, train_x, train_y,
num_images_per_id, batch_size, log_dir, image_shape=None,
restore_path=None, exclude_from_restore=None, run_id=None,
number_of_steps=None, loss_mode="cosine-softmax",
learning_rate=1e-3, trainable_scopes=None,
save_summaries_secs=60, save_interval_secs=300):
"""Start training.
Parameters
----------
preprocess_fn : Callable[tf.Tensor] -> tf.Tensor
A callable that applies preprocessing to a given input image tensor of
dtype tf.uint8 and returns a floating point representation (tf.float32).
network_factory : Callable[tf.Tensor] -> (tf.Tensor, tf.Tensor)
A callable that takes as argument a preprocessed input image of dtype
tf.float32 and returns the feature representation as well as a logits
tensors. The logits may be set to None if not required by the loss.
train_x : List[str] | np.ndarray
A list of image filenames or a tensor of images.
train_y : List[int] | np.ndarray
A list or one-dimensional array of labels for the images in `train_x`.
num_images_per_id : int
Sample `num_images_per_id` images for each label at each training
iteration. The number of identities sampled at each iteration is
computed as `batch_size / num_images_per_id`. The `batch_size` must be
divisible by this number.
batch_size : int
The number of images at each training iteration.
log_dir : str
Used to construct the log and checkpoint directory. They are stored in
`log_dir/run_id`.
image_shape : Tuple[int, int, int] | NoneType
Image shape (height, width, channels) or None. If None, `train_x` must
be an array of images such that the shape can be queries from this
variable.
restore_path : Optional[str]
If not None, resumes training from the given checkpoint file.
exclude_from_restore : Optional[List[str]]
An optional list of variable scopes to be used in conjunction with
`restore_path`. If not None, variables in the given scopes are not
restored from the checkpoint file.
run_id : Optional[str]
A string that identifies the training run; used to construct the
log and checkpoint directory `log_dir/run_id`. If None, a random
string is created.
number_of_steps : Optional[int]
The total number of training iterations. If None, training runs
indefenitely.
loss_mode : Optional[str]
A string that identifies the loss function used for training; must be
one of 'cosine-softmax', 'magnet', 'triplet'. This value defaults to
'cosine-softmax'.
learning_rate : Optional[float]
Adam learning rate; defaults to 1e-3.
trainable_scopes : Optional[List[str]]
Optional list of variable scopes. If not None, only variables within the
given scopes are trained. Otherwise all variables are trained.
save_summaries_secs : Optional[int]
Save training summaries every `save_summaries_secs` seconds to the
log directory.
save_interval_secs : Optional[int]
Save checkpoints every `save_interval_secs` seconds to the log
directory.
"""
if image_shape is None:
# If image_shape is not set, train_x must be an image array. Here we
# query the image shape from the array of images.
assert type(train_x) == np.ndarray
image_shape = train_x.shape[1:]
elif type(train_x) == np.ndarray:
assert train_x.shape[1:] == image_shape
read_from_file = type(train_x) != np.ndarray
trainer, train_op = create_trainer(
preprocess_fn, network_factory, read_from_file, image_shape, batch_size,
loss_mode, learning_rate=learning_rate,
trainable_scopes=trainable_scopes)
feed_generator = queued_trainer.random_sample_identities_forever(
batch_size, num_images_per_id, train_x, train_y)
variables_to_restore = slim.get_variables_to_restore(
exclude=exclude_from_restore)
trainer.run(
feed_generator, train_op, log_dir, restore_path=restore_path,
variables_to_restore=variables_to_restore,
run_id=run_id, save_summaries_secs=save_summaries_secs,
save_interval_secs=save_interval_secs, number_of_steps=number_of_steps)
def create_trainer(preprocess_fn, network_factory, read_from_file, image_shape,
batch_size, loss_mode, learning_rate=1e-3,
trainable_scopes=None):
"""Create trainer.
Parameters
----------
preprocess_fn : Callable[tf.Tensor] -> tf.Tensor
A callable that applies preprocessing to a given input image tensor of
dtype tf.uint8 and returns a floating point representation (tf.float32).
network_factory : Callable[tf.Tensor] -> (tf.Tensor, tf.Tensor)
A callable that takes as argument a preprocessed input image of dtype
tf.float32 and returns the feature representation as well as a logits
tensors. The logits may be set to None if not required by the loss.
read_from_file:
Set to True if images are read from file. If False, the trainer expects
input images as numpy arrays (i.e., data loading must be handled outside
of the trainer).
image_shape: Tuple[int, int, int]
Image shape (height, width, channels).
batch_size:
Number of images per batch.
loss_mode : str
One of 'cosine-softmax', 'magnet', 'triplet'. If 'cosine-softmax', the
logits tensor returned by the `network_factory` must not be None.
learning_rate: float
Adam learning rate; defauls to 1e-3.
trainable_scopes: Optional[List[str]]
Optional list of variable scopes. If not None, only variables within the
given scopes are trained. Otherwise all variables are trained.
Returns
-------
QueuedTrainer
Returns a trainer object to be used for training and evaluating the
given TensorFlow model.
"""
num_channels = image_shape[-1] if len(image_shape) == 3 else 1
with tf.device("/cpu:0"):
label_var = tf.placeholder(tf.int64, (None,))
if read_from_file:
# NOTE(nwojke): tf.image.decode_jpg handles various image types.
filename_var = tf.placeholder(tf.string, (None, ))
image_var = tf.map_fn(
lambda x: tf.image.decode_jpeg(
tf.read_file(x), channels=num_channels),
filename_var, back_prop=False, dtype=tf.uint8)
image_var = tf.image.resize_images(image_var, image_shape[:2])
input_vars = [filename_var, label_var]
else:
image_var = tf.placeholder(tf.uint8, (None,) + image_shape)
input_vars = [image_var, label_var]
enqueue_vars = [
tf.map_fn(
lambda x: preprocess_fn(x, is_training=True),
image_var, back_prop=False, dtype=tf.float32),
label_var]
trainer = queued_trainer.QueuedTrainer(enqueue_vars, input_vars)
image_var, label_var = trainer.get_input_vars(batch_size)
tf.summary.image("images", image_var)
feature_var, logit_var = network_factory(image_var)
_create_loss(feature_var, logit_var, label_var, mode=loss_mode)
if trainable_scopes is None:
variables_to_train = tf.trainable_variables()
else:
variables_to_train = []
for scope in trainable_scopes:
variables = tf.get_collection(
tf.GraphKeys.TRAINABLE_VARIABLES, scope)
variables_to_train.extend(variables)
global_step = tf.train.get_or_create_global_step()
loss_var = tf.losses.get_total_loss()
train_op = slim.learning.create_train_op(
loss_var, tf.train.AdamOptimizer(learning_rate=learning_rate),
global_step, summarize_gradients=False,
variables_to_train=variables_to_train)
tf.summary.scalar("total_loss", loss_var)
tf.summary.scalar("learning_rate", learning_rate)
regularization_var = tf.reduce_sum(tf.losses.get_regularization_loss())
tf.summary.scalar("weight_loss", regularization_var)
return trainer, train_op
def eval_loop(preprocess_fn, network_factory, data_x, data_y, camera_indices,
log_dir, eval_log_dir, image_shape=None, run_id=None,
loss_mode="cosine-softmax", num_galleries=10, random_seed=4321):
"""Evaluate a running training session using CMC metric averaged over
`num_galleries` galleries where each gallery contains for every identity a
randomly selected image-pair.
A call to this function will block indefinitely, monitoring the
`log_dir/run_id` for saved checkpoints. Then, creates summaries in
`eval_log_dir/run_id` that can be monitored with tensorboard.
Parameters
----------
preprocess_fn : Callable[tf.Tensor] -> tf.Tensor
A callable that applies preprocessing to a given input image tensor of
dtype tf.uint8 and returns a floating point representation (tf.float32).
network_factory : Callable[tf.Tensor] -> (tf.Tensor, tf.Tensor)
A callable that takes as argument a preprocessed input image of dtype
tf.float32 and returns the feature representation as well as a logits
tensors. The logits may be set to None if not required by the loss.
data_x : List[str] | np.ndarray
A list of image filenames or a tensor of images.
data_y : List[int] | np.ndarray
A list or one-dimensional array of labels for the images in `data_x`.
camera_indices: Optional[List[int] | np.ndarray]
A list or one-dimensional array of camera indices for the images in
`data_x`. If not None, CMC galleries are created such that image pairs
are collected from different cameras.
log_dir: str
Should be equivalent to the `log_dir` passed into `train_loop` of the
training run to monitor.
eval_log_dir:
Used to construct the tensorboard log directory where metrics are
summarized.
image_shape : Tuple[int, int, int] | NoneType
Image shape (height, width, channels) or None. If None, `train_x` must
be an array of images such that the shape can be queries from this
variable.
run_id : str
A string that identifies the training run; must be set to the same
`run_id` passed into `train_loop`.
loss_mode : Optional[str]
A string that identifies the loss function used for training; must be
one of 'cosine-softmax', 'magnet', 'triplet'. This value defaults to
'cosine-softmax'.
num_galleries: int
The number of galleries to be constructed for evaluation of CMC
metrics.
random_seed: Optional[int]
If not None, the NumPy random seed is fixed to this number; can be used
to produce the same galleries over multiple runs.
"""
if image_shape is None:
# If image_shape is not set, train_x must be an image array. Here we
# query the image shape from the array of images.
assert type(data_x) == np.ndarray
image_shape = data_x.shape[1:]
elif type(data_x) == np.ndarray:
assert data_x.shape[1:] == image_shape
read_from_file = type(data_x) != np.ndarray
# Create num_galleries random CMC galleries to average CMC top-k over.
probes, galleries = [], []
for i in range(num_galleries):
probe_indices, gallery_indices = util.create_cmc_probe_and_gallery(
data_y, camera_indices, seed=random_seed + i)
probes.append(probe_indices)
galleries.append(gallery_indices)
probes, galleries = np.asarray(probes), np.asarray(galleries)
# Set up the data feed.
with tf.device("/cpu:0"):
# Feed probe and gallery indices to the trainer.
num_probes, num_gallery_images = probes.shape[1], galleries.shape[1]
probe_idx_var = tf.placeholder(tf.int64, (None, num_probes))
gallery_idx_var = tf.placeholder(tf.int64, (None, num_gallery_images))
trainer = queued_trainer.QueuedTrainer(
[probe_idx_var, gallery_idx_var])
# Retrieve indices from trainer and gather data from constant memory.
data_x_var = tf.constant(data_x)
data_y_var = tf.constant(data_y)
probe_idx_var, gallery_idx_var = trainer.get_input_vars(batch_size=1)
probe_idx_var = tf.squeeze(probe_idx_var)
gallery_idx_var = tf.squeeze(gallery_idx_var)
# Apply preprocessing.
probe_x_var = tf.gather(data_x_var, probe_idx_var)
if read_from_file:
# NOTE(nwojke): tf.image.decode_jpg handles various image types.
num_channels = image_shape[-1] if len(image_shape) == 3 else 1
probe_x_var = tf.map_fn(
lambda x: tf.image.decode_jpeg(
tf.read_file(x), channels=num_channels),
probe_x_var, dtype=tf.uint8)
probe_x_var = tf.image.resize_images(probe_x_var, image_shape[:2])
probe_x_var = tf.map_fn(
lambda x: preprocess_fn(x, is_training=False),
probe_x_var, back_prop=False, dtype=tf.float32)
probe_y_var = tf.gather(data_y_var, probe_idx_var)
gallery_x_var = tf.gather(data_x_var, gallery_idx_var)
if read_from_file:
# NOTE(nwojke): tf.image.decode_jpg handles various image types.
num_channels = image_shape[-1] if len(image_shape) == 3 else 1
gallery_x_var = tf.map_fn(
lambda x: tf.image.decode_jpeg(
tf.read_file(x), channels=num_channels),
gallery_x_var, dtype=tf.uint8)
gallery_x_var = tf.image.resize_images(
gallery_x_var, image_shape[:2])
gallery_x_var = tf.map_fn(
lambda x: preprocess_fn(x, is_training=False),
gallery_x_var, back_prop=False, dtype=tf.float32)
gallery_y_var = tf.gather(data_y_var, gallery_idx_var)
# Construct the network and compute features.
probe_and_gallery_x_var = tf.concat(
axis=0, values=[probe_x_var, gallery_x_var])
probe_and_gallery_x_var, _ = network_factory(probe_and_gallery_x_var)
num_probe = tf.shape(probe_x_var)[0]
probe_x_var = tf.slice(
probe_and_gallery_x_var, [0, 0], [num_probe, -1])
gallery_x_var = tf.slice(
probe_and_gallery_x_var, [num_probe, 0], [-1, -1])
# Set up the metrics.
distance_measure = (
metrics.cosine_distance if loss_mode == "cosine-softmax"
else metrics.pdist)
def cmc_metric_at_k(k):
return metrics.streaming_mean_cmc_at_k(
probe_x_var, probe_y_var, gallery_x_var, gallery_y_var,
k=k, measure=distance_measure)
names_to_values, names_to_updates = slim.metrics.aggregate_metric_map({
"Precision@%d" % k: cmc_metric_at_k(k) for k in [1, 5, 10, 20]})
for metric_name, metric_value in names_to_values.items():
tf.summary.scalar(metric_name, metric_value)
# Start evaluation loop.
trainer.evaluate(
(probes, galleries), log_dir, eval_log_dir, run_id=run_id,
eval_op=list(names_to_updates.values()), eval_interval_secs=60)
def finalize(preprocess_fn, network_factory, checkpoint_path, image_shape,
output_filename):
"""Finalize model, i.e., strip off training variables and only save model
variables to checkpoint file.
Parameters
----------
preprocess_fn : Callable[tf.Tensor] -> tf.Tensor
A callable that applies preprocessing to a given input image tensor of
dtype tf.uint8 and returns a floating point representation (tf.float32).
network_factory : Callable[tf.Tensor] -> (tf.Tensor, tf.Tensor)
A callable that takes as argument a preprocessed input image of dtype
tf.float32 and returns the feature representation as well as a logits
tensors. The logits may be set to None if not required by the loss.
checkpoint_path : str
The checkpoint file to load.
image_shape : Tuple[int, int, int]
Image shape (height, width, channels).
output_filename : str
The checkpoint file to write.
"""
with tf.Session(graph=tf.Graph()) as session:
input_var = tf.placeholder(tf.uint8, (None, ) + image_shape)
image_var = tf.map_fn(
lambda x: preprocess_fn(x, is_training=False),
input_var, back_prop=False, dtype=tf.float32)
network_factory(image_var)
loader = tf.train.Saver(slim.get_variables_to_restore())
loader.restore(session, checkpoint_path)
saver = tf.train.Saver(slim.get_model_variables())
saver.save(session, output_filename, global_step=None)
def freeze(preprocess_fn, network_factory, checkpoint_path, image_shape,
output_filename, input_name="images", feature_name="features"):
"""Write frozen inference graph that takes as input a list of images and
returns their feature representation.
Parameters
----------
preprocess_fn : Callable[tf.Tensor] -> tf.Tensor
A callable that applies preprocessing to a given input image tensor of
dtype tf.uint8 and returns a floating point representation (tf.float32).
network_factory : Callable[tf.Tensor] -> (tf.Tensor, tf.Tensor)
A callable that takes as argument a preprocessed input image of dtype
tf.float32 and returns the feature representation as well as a logits
tensors. The logits may be set to None if not required by the loss.
checkpoint_path : str
The checkpoint file to load.
image_shape : Tuple[int, int, int]
Image shape (height, width, channels).
output_filename : str
Path to the file to write to.
input_name : Optional[str]
The input (image) placeholder will be given this name; defaults
to `images`.
feature_name : Optional[str]
The output (feature) tensor will be given this name; defaults to
`features`.
"""
with tf.Session(graph=tf.Graph()) as session:
input_var = tf.placeholder(
tf.uint8, (None, ) + image_shape, name=input_name)
image_var = tf.map_fn(
lambda x: preprocess_fn(x, is_training=False),
input_var, back_prop=False, dtype=tf.float32)
features, _ = network_factory(image_var)
features = tf.identity(features, name=feature_name)
saver = tf.train.Saver(slim.get_variables_to_restore())
saver.restore(session, checkpoint_path)
output_graph_def = tf.graph_util.convert_variables_to_constants(
session, tf.get_default_graph().as_graph_def(),
[features.name.split(":")[0]])
with tf.gfile.GFile(output_filename, "wb") as file_handle:
file_handle.write(output_graph_def.SerializeToString())
def encode(preprocess_fn, network_factory, checkpoint_path, images_or_filenames,
batch_size=32, session=None, image_shape=None):
"""
Parameters
----------
preprocess_fn : Callable[tf.Tensor] -> tf.Tensor
A callable that applies preprocessing to a given input image tensor of
dtype tf.uint8 and returns a floating point representation (tf.float32).
network_factory : Callable[tf.Tensor] -> (tf.Tensor, tf.Tensor)
A callable that takes as argument a preprocessed input image of dtype
tf.float32 and returns the feature representation as well as a logits
tensors. The logits may be set to None if not required by the loss.
checkpoint_path : str
Checkpoint file to load.
images_or_filenames : List[str] | np.ndarray
Either a list of filenames or an array of images.
batch_size : Optional[int]
Optional batch size; defaults to 32.
session : Optional[tf.Session]
Optional TensorFlow session. If None, a new session is created.
image_shape : Tuple[int, int, int] | NoneType
Image shape (height, width, channels) or None. If None, `train_x` must
be an array of images such that the shape can be queries from this
variable.
Returns
-------
np.ndarray
"""
if image_shape is None:
assert type(images_or_filenames) == np.ndarray
image_shape = images_or_filenames.shape[1:]
elif type(images_or_filenames) == np.ndarray:
assert images_or_filenames.shape[1:] == image_shape
read_from_file = type(images_or_filenames) != np.ndarray
encoder_fn = _create_encoder(
preprocess_fn, network_factory, image_shape, batch_size, session,
checkpoint_path, read_from_file)
features = encoder_fn(images_or_filenames)
return features
def _create_encoder(preprocess_fn, network_factory, image_shape, batch_size=32,
session=None, checkpoint_path=None, read_from_file=False):
if read_from_file:
num_channels = image_shape[-1] if len(image_shape) == 3 else 1
input_var = tf.placeholder(tf.string, (None, ))
image_var = tf.map_fn(
lambda x: tf.image.decode_jpeg(
tf.read_file(x), channels=num_channels),
input_var, back_prop=False, dtype=tf.uint8)
image_var = tf.image.resize_images(image_var, image_shape[:2])
else:
input_var = tf.placeholder(tf.uint8, (None, ) + image_shape)
image_var = input_var
preprocessed_image_var = tf.map_fn(
lambda x: preprocess_fn(x, is_training=False),
image_var, back_prop=False, dtype=tf.float32)
feature_var, _ = network_factory(preprocessed_image_var)
feature_dim = feature_var.get_shape().as_list()[-1]
if session is None:
session = tf.Session()
if checkpoint_path is not None:
tf.train.get_or_create_global_step()
init_assign_op, init_feed_dict = slim.assign_from_checkpoint(
checkpoint_path, slim.get_model_variables())
session.run(init_assign_op, feed_dict=init_feed_dict)
def encoder(data_x):
out = np.zeros((len(data_x), feature_dim), np.float32)
queued_trainer.run_in_batches(
lambda x: session.run(feature_var, feed_dict=x),
{input_var: data_x}, out, batch_size)
return out
return encoder
def _create_softmax_loss(feature_var, logit_var, label_var):
del feature_var # Unused variable
cross_entropy_var = slim.losses.sparse_softmax_cross_entropy(
logit_var, tf.cast(label_var, tf.int64))
tf.summary.scalar("cross_entropy_loss", cross_entropy_var)
accuracy_var = slim.metrics.accuracy(
tf.cast(tf.argmax(logit_var, 1), tf.int64), label_var)
tf.summary.scalar("classification accuracy", accuracy_var)
def _create_magnet_loss(feature_var, logit_var, label_var, monitor_mode=False):
del logit_var # Unusued variable
magnet_loss, _, _ = losses.magnet_loss(feature_var, label_var)
tf.summary.scalar("magnet_loss", magnet_loss)
if not monitor_mode:
slim.losses.add_loss(magnet_loss)
def _create_triplet_loss(feature_var, logit_var, label_var, monitor_mode=False):
del logit_var # Unusued variables
triplet_loss = losses.softmargin_triplet_loss(feature_var, label_var)
tf.summary.scalar("triplet_loss", triplet_loss)
if not monitor_mode:
slim.losses.add_loss(triplet_loss)
def _create_loss(
feature_var, logit_var, label_var, mode, monitor_magnet=True,
monitor_triplet=True):
if mode == "cosine-softmax":
_create_softmax_loss(feature_var, logit_var, label_var)
elif mode == "magnet":
_create_magnet_loss(feature_var, logit_var, label_var)
elif mode == "triplet":
_create_triplet_loss(feature_var, logit_var, label_var)
else:
raise ValueError("Unknown loss mode: '%s'" % mode)
if monitor_magnet and mode != "magnet":
_create_magnet_loss(
feature_var, logit_var, label_var, monitor_mode=monitor_magnet)
if monitor_triplet and mode != "triplet":
_create_triplet_loss(
feature_var, logit_var, label_var, monitor_mode=True)