-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathreferences.html
776 lines (665 loc) · 64.9 KB
/
references.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
<!DOCTYPE html>
<html lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge" />
<title>References | NimbleUserManual.knit</title>
<meta name="description" content="This is the NIMBLE User Manual." />
<meta name="generator" content="bookdown 0.39 and GitBook 2.6.7" />
<meta property="og:title" content="References | NimbleUserManual.knit" />
<meta property="og:type" content="book" />
<meta property="og:image" content="/nimble-icon.png" />
<meta property="og:description" content="This is the NIMBLE User Manual." />
<meta name="github-repo" content="nimble-dev/nimble" />
<meta name="twitter:card" content="summary" />
<meta name="twitter:title" content="References | NimbleUserManual.knit" />
<meta name="twitter:description" content="This is the NIMBLE User Manual." />
<meta name="twitter:image" content="/nimble-icon.png" />
<meta name="viewport" content="width=device-width, initial-scale=1" />
<meta name="apple-mobile-web-app-capable" content="yes" />
<meta name="apple-mobile-web-app-status-bar-style" content="black" />
<link rel="prev" href="example-maximum-likelihood-estimation-using-optim-with-gradients-from-nimderivs..html"/>
<script src="libs/jquery-3.6.0/jquery-3.6.0.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/fuse.js@6.4.6/dist/fuse.min.js"></script>
<link href="libs/gitbook-2.6.7/css/style.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-table.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-bookdown.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-highlight.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-search.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-fontsettings.css" rel="stylesheet" />
<link href="libs/gitbook-2.6.7/css/plugin-clipboard.css" rel="stylesheet" />
<link href="libs/anchor-sections-1.1.0/anchor-sections.css" rel="stylesheet" />
<link href="libs/anchor-sections-1.1.0/anchor-sections-hash.css" rel="stylesheet" />
<script src="libs/anchor-sections-1.1.0/anchor-sections.js"></script>
<style type="text/css">
pre > code.sourceCode { white-space: pre; position: relative; }
pre > code.sourceCode > span { line-height: 1.25; }
pre > code.sourceCode > span:empty { height: 1.2em; }
.sourceCode { overflow: visible; }
code.sourceCode > span { color: inherit; text-decoration: inherit; }
pre.sourceCode { margin: 0; }
@media screen {
div.sourceCode { overflow: auto; }
}
@media print {
pre > code.sourceCode { white-space: pre-wrap; }
pre > code.sourceCode > span { display: inline-block; text-indent: -5em; padding-left: 5em; }
}
pre.numberSource code
{ counter-reset: source-line 0; }
pre.numberSource code > span
{ position: relative; left: -4em; counter-increment: source-line; }
pre.numberSource code > span > a:first-child::before
{ content: counter(source-line);
position: relative; left: -1em; text-align: right; vertical-align: baseline;
border: none; display: inline-block;
-webkit-touch-callout: none; -webkit-user-select: none;
-khtml-user-select: none; -moz-user-select: none;
-ms-user-select: none; user-select: none;
padding: 0 4px; width: 4em;
color: #aaaaaa;
}
pre.numberSource { margin-left: 3em; border-left: 1px solid #aaaaaa; padding-left: 4px; }
div.sourceCode
{ }
@media screen {
pre > code.sourceCode > span > a:first-child::before { text-decoration: underline; }
}
code span.al { color: #ff0000; font-weight: bold; } /* Alert */
code span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code span.at { color: #7d9029; } /* Attribute */
code span.bn { color: #40a070; } /* BaseN */
code span.bu { color: #008000; } /* BuiltIn */
code span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code span.ch { color: #4070a0; } /* Char */
code span.cn { color: #880000; } /* Constant */
code span.co { color: #60a0b0; font-style: italic; } /* Comment */
code span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code span.do { color: #ba2121; font-style: italic; } /* Documentation */
code span.dt { color: #902000; } /* DataType */
code span.dv { color: #40a070; } /* DecVal */
code span.er { color: #ff0000; font-weight: bold; } /* Error */
code span.ex { } /* Extension */
code span.fl { color: #40a070; } /* Float */
code span.fu { color: #06287e; } /* Function */
code span.im { color: #008000; font-weight: bold; } /* Import */
code span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
code span.kw { color: #007020; font-weight: bold; } /* Keyword */
code span.op { color: #666666; } /* Operator */
code span.ot { color: #007020; } /* Other */
code span.pp { color: #bc7a00; } /* Preprocessor */
code span.sc { color: #4070a0; } /* SpecialChar */
code span.ss { color: #bb6688; } /* SpecialString */
code span.st { color: #4070a0; } /* String */
code span.va { color: #19177c; } /* Variable */
code span.vs { color: #4070a0; } /* VerbatimString */
code span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
</style>
<style type="text/css">
div.hanging-indent{margin-left: 1.5em; text-indent: -1.5em;}
</style>
<style type="text/css">
/* Used with Pandoc 2.11+ new --citeproc when CSL is used */
div.csl-bib-body { }
div.csl-entry {
clear: both;
margin-bottom: 0em;
}
.hanging div.csl-entry {
margin-left:2em;
text-indent:-2em;
}
div.csl-left-margin {
min-width:2em;
float:left;
}
div.csl-right-inline {
margin-left:2em;
padding-left:1em;
}
div.csl-indent {
margin-left: 2em;
}
</style>
<link rel="stylesheet" href="style.css" type="text/css" />
</head>
<body>
<div class="book without-animation with-summary font-size-2 font-family-1" data-basepath=".">
<div class="book-summary">
<nav role="navigation">
<ul class="summary">
<img src="./nimble-icon.png"
width=100>
<li><a href="./cha-welcome-nimble.html">NIMBLE User Manual, Version 1.3.0</a></li>
<li><a href="/~https://github.com/nimble-dev/nimble">NIMBLE Development Team</a></li>
<li><a href="https://R-nimble.org">https://R-nimble.org</a></li>
<li class="divider"></li>
<li class="part"><span><b>I Introduction</b></span></li>
<li class="chapter" data-level="1" data-path="cha-welcome-nimble.html"><a href="cha-welcome-nimble.html"><i class="fa fa-check"></i><b>1</b> Welcome to NIMBLE</a>
<ul>
<li class="chapter" data-level="1.1" data-path="cha-welcome-nimble.html"><a href="cha-welcome-nimble.html#sec:what-is-nimble"><i class="fa fa-check"></i><b>1.1</b> What does NIMBLE do?</a></li>
<li class="chapter" data-level="1.2" data-path="cha-welcome-nimble.html"><a href="cha-welcome-nimble.html#how-to-use-this-manual"><i class="fa fa-check"></i><b>1.2</b> How to use this manual</a></li>
</ul></li>
<li class="chapter" data-level="2" data-path="cha-lightning-intro.html"><a href="cha-lightning-intro.html"><i class="fa fa-check"></i><b>2</b> Lightning introduction</a>
<ul>
<li class="chapter" data-level="2.1" data-path="cha-lightning-intro.html"><a href="cha-lightning-intro.html#sec:brief-example"><i class="fa fa-check"></i><b>2.1</b> A brief example</a></li>
<li class="chapter" data-level="2.2" data-path="cha-lightning-intro.html"><a href="cha-lightning-intro.html#sec:creating-model"><i class="fa fa-check"></i><b>2.2</b> Creating a model</a></li>
<li class="chapter" data-level="2.3" data-path="cha-lightning-intro.html"><a href="cha-lightning-intro.html#sec:compiling-model"><i class="fa fa-check"></i><b>2.3</b> Compiling the model</a></li>
<li class="chapter" data-level="2.4" data-path="cha-lightning-intro.html"><a href="cha-lightning-intro.html#sec:intro-runMCMC"><i class="fa fa-check"></i><b>2.4</b> One-line invocation of MCMC</a></li>
<li class="chapter" data-level="2.5" data-path="cha-lightning-intro.html"><a href="cha-lightning-intro.html#sec:creating-mcmc"><i class="fa fa-check"></i><b>2.5</b> Creating, compiling and running a basic MCMC configuration</a></li>
<li class="chapter" data-level="2.6" data-path="cha-lightning-intro.html"><a href="cha-lightning-intro.html#sec:customizing-mcmc"><i class="fa fa-check"></i><b>2.6</b> Customizing the MCMC</a></li>
<li class="chapter" data-level="2.7" data-path="cha-lightning-intro.html"><a href="cha-lightning-intro.html#sec:running-mcem"><i class="fa fa-check"></i><b>2.7</b> Running MCEM</a></li>
<li class="chapter" data-level="2.8" data-path="cha-lightning-intro.html"><a href="cha-lightning-intro.html#sec:creating-your-own"><i class="fa fa-check"></i><b>2.8</b> Creating your own functions</a></li>
</ul></li>
<li class="chapter" data-level="3" data-path="cha-more-introduction.html"><a href="cha-more-introduction.html"><i class="fa fa-check"></i><b>3</b> More introduction</a>
<ul>
<li class="chapter" data-level="3.1" data-path="cha-more-introduction.html"><a href="cha-more-introduction.html#nimble-adopts-and-extends-the-bugs-language-for-specifying-models"><i class="fa fa-check"></i><b>3.1</b> NIMBLE adopts and extends the BUGS language for specifying models</a></li>
<li class="chapter" data-level="3.2" data-path="cha-more-introduction.html"><a href="cha-more-introduction.html#sec:nimble-lang-writ"><i class="fa fa-check"></i><b>3.2</b> nimbleFunctions for writing algorithms</a></li>
<li class="chapter" data-level="3.3" data-path="cha-more-introduction.html"><a href="cha-more-introduction.html#sec:nimble-algor-libr"><i class="fa fa-check"></i><b>3.3</b> The NIMBLE algorithm library</a></li>
</ul></li>
<li class="chapter" data-level="4" data-path="cha-installing-nimble.html"><a href="cha-installing-nimble.html"><i class="fa fa-check"></i><b>4</b> Installing NIMBLE</a>
<ul>
<li class="chapter" data-level="4.1" data-path="cha-installing-nimble.html"><a href="cha-installing-nimble.html#sec:requ-run-nimble"><i class="fa fa-check"></i><b>4.1</b> Requirements to run NIMBLE</a></li>
<li class="chapter" data-level="4.2" data-path="cha-installing-nimble.html"><a href="cha-installing-nimble.html#sec:compiler"><i class="fa fa-check"></i><b>4.2</b> Installing a C++ compiler for NIMBLE to use</a>
<ul>
<li class="chapter" data-level="4.2.1" data-path="cha-installing-nimble.html"><a href="cha-installing-nimble.html#macos"><i class="fa fa-check"></i><b>4.2.1</b> MacOS</a></li>
<li class="chapter" data-level="4.2.2" data-path="cha-installing-nimble.html"><a href="cha-installing-nimble.html#linux"><i class="fa fa-check"></i><b>4.2.2</b> Linux</a></li>
<li class="chapter" data-level="4.2.3" data-path="cha-installing-nimble.html"><a href="cha-installing-nimble.html#windows"><i class="fa fa-check"></i><b>4.2.3</b> Windows</a></li>
</ul></li>
<li class="chapter" data-level="4.3" data-path="cha-installing-nimble.html"><a href="cha-installing-nimble.html#installing-the-nimble-package"><i class="fa fa-check"></i><b>4.3</b> Installing the NIMBLE package</a></li>
<li class="chapter" data-level="4.4" data-path="cha-installing-nimble.html"><a href="cha-installing-nimble.html#troubleshooting-installation-problems"><i class="fa fa-check"></i><b>4.4</b> Troubleshooting installation problems</a></li>
<li class="chapter" data-level="4.5" data-path="cha-installing-nimble.html"><a href="cha-installing-nimble.html#customizing-your-installation"><i class="fa fa-check"></i><b>4.5</b> Customizing your installation</a>
<ul>
<li class="chapter" data-level="4.5.1" data-path="cha-installing-nimble.html"><a href="cha-installing-nimble.html#using-your-own-copy-of-eigen"><i class="fa fa-check"></i><b>4.5.1</b> Using your own copy of Eigen</a></li>
<li class="chapter" data-level="4.5.2" data-path="cha-installing-nimble.html"><a href="cha-installing-nimble.html#using-libnimble"><i class="fa fa-check"></i><b>4.5.2</b> Using libnimble</a></li>
<li class="chapter" data-level="4.5.3" data-path="cha-installing-nimble.html"><a href="cha-installing-nimble.html#sec:blas"><i class="fa fa-check"></i><b>4.5.3</b> BLAS and LAPACK</a></li>
<li class="chapter" data-level="4.5.4" data-path="cha-installing-nimble.html"><a href="cha-installing-nimble.html#customizing-compilation-of-the-nimble-generated-c"><i class="fa fa-check"></i><b>4.5.4</b> Customizing compilation of the NIMBLE-generated C++</a></li>
</ul></li>
</ul></li>
<li class="part"><span><b>II Models in NIMBLE</b></span></li>
<li class="chapter" data-level="5" data-path="cha-writing-models.html"><a href="cha-writing-models.html"><i class="fa fa-check"></i><b>5</b> Writing models in NIMBLE’s dialect of BUGS</a>
<ul>
<li class="chapter" data-level="5.1" data-path="cha-writing-models.html"><a href="cha-writing-models.html#sec:supp-feat-bugs"><i class="fa fa-check"></i><b>5.1</b> Comparison to BUGS dialects supported by WinBUGS, OpenBUGS and JAGS</a>
<ul>
<li class="chapter" data-level="5.1.1" data-path="cha-writing-models.html"><a href="cha-writing-models.html#supported-features-of-bugs-and-jags"><i class="fa fa-check"></i><b>5.1.1</b> Supported features of BUGS and JAGS</a></li>
<li class="chapter" data-level="5.1.2" data-path="cha-writing-models.html"><a href="cha-writing-models.html#sec:extensions-bugs"><i class="fa fa-check"></i><b>5.1.2</b> NIMBLE’s Extensions to BUGS and JAGS</a></li>
<li class="chapter" data-level="5.1.3" data-path="cha-writing-models.html"><a href="cha-writing-models.html#sec:not-yet-supported"><i class="fa fa-check"></i><b>5.1.3</b> Not-supported features of BUGS and JAGS</a></li>
</ul></li>
<li class="chapter" data-level="5.2" data-path="cha-writing-models.html"><a href="cha-writing-models.html#writing-models"><i class="fa fa-check"></i><b>5.2</b> Writing models</a>
<ul>
<li class="chapter" data-level="5.2.1" data-path="cha-writing-models.html"><a href="cha-writing-models.html#declaring-stochastic-and-deterministic-nodes"><i class="fa fa-check"></i><b>5.2.1</b> Declaring stochastic and deterministic nodes</a></li>
<li class="chapter" data-level="5.2.2" data-path="cha-writing-models.html"><a href="cha-writing-models.html#sec:more-kinds-bugs"><i class="fa fa-check"></i><b>5.2.2</b> More kinds of BUGS declarations</a></li>
<li class="chapter" data-level="5.2.3" data-path="cha-writing-models.html"><a href="cha-writing-models.html#subsec:vectorized-versus-scalar-declarations"><i class="fa fa-check"></i><b>5.2.3</b> Vectorized versus scalar declarations</a></li>
<li class="chapter" data-level="5.2.4" data-path="cha-writing-models.html"><a href="cha-writing-models.html#subsec:dists-and-functions"><i class="fa fa-check"></i><b>5.2.4</b> Available distributions</a></li>
<li class="chapter" data-level="5.2.5" data-path="cha-writing-models.html"><a href="cha-writing-models.html#subsec:BUGS-lang-fxns"><i class="fa fa-check"></i><b>5.2.5</b> Available BUGS language functions</a></li>
<li class="chapter" data-level="5.2.6" data-path="cha-writing-models.html"><a href="cha-writing-models.html#subsec:BUGS-link"><i class="fa fa-check"></i><b>5.2.6</b> Available link functions</a></li>
<li class="chapter" data-level="5.2.7" data-path="cha-writing-models.html"><a href="cha-writing-models.html#subsec:trunc"><i class="fa fa-check"></i><b>5.2.7</b> Truncation, censoring, and constraints</a></li>
<li class="chapter" data-level="5.2.8" data-path="cha-writing-models.html"><a href="cha-writing-models.html#subsec:macros"><i class="fa fa-check"></i><b>5.2.8</b> Model macros</a></li>
</ul></li>
</ul></li>
<li class="chapter" data-level="6" data-path="cha-building-models.html"><a href="cha-building-models.html"><i class="fa fa-check"></i><b>6</b> Building and using models</a>
<ul>
<li class="chapter" data-level="6.1" data-path="cha-building-models.html"><a href="cha-building-models.html#creating-model-objects"><i class="fa fa-check"></i><b>6.1</b> Creating model objects</a>
<ul>
<li class="chapter" data-level="6.1.1" data-path="cha-building-models.html"><a href="cha-building-models.html#using-nimblemodel-to-create-a-model"><i class="fa fa-check"></i><b>6.1.1</b> Using <em>nimbleModel</em> to create a model</a></li>
<li class="chapter" data-level="6.1.2" data-path="cha-building-models.html"><a href="cha-building-models.html#sec:readBUGSmodel"><i class="fa fa-check"></i><b>6.1.2</b> Creating a model from standard BUGS and JAGS input files</a></li>
<li class="chapter" data-level="6.1.3" data-path="cha-building-models.html"><a href="cha-building-models.html#sub:multiple-instances"><i class="fa fa-check"></i><b>6.1.3</b> Making multiple instances from the same model definition</a></li>
</ul></li>
<li class="chapter" data-level="6.2" data-path="cha-building-models.html"><a href="cha-building-models.html#sec:nodes-and-variables"><i class="fa fa-check"></i><b>6.2</b> NIMBLE models are objects you can query and manipulate</a>
<ul>
<li class="chapter" data-level="6.2.1" data-path="cha-building-models.html"><a href="cha-building-models.html#sec:what-are-nodes-and-variables"><i class="fa fa-check"></i><b>6.2.1</b> What are variables and nodes?</a></li>
<li class="chapter" data-level="6.2.2" data-path="cha-building-models.html"><a href="cha-building-models.html#determining-the-nodes-and-variables-in-a-model"><i class="fa fa-check"></i><b>6.2.2</b> Determining the nodes and variables in a model</a></li>
<li class="chapter" data-level="6.2.3" data-path="cha-building-models.html"><a href="cha-building-models.html#sec:accessing-nodes"><i class="fa fa-check"></i><b>6.2.3</b> Accessing nodes</a></li>
<li class="chapter" data-level="6.2.4" data-path="cha-building-models.html"><a href="cha-building-models.html#sec:how-nodes-are"><i class="fa fa-check"></i><b>6.2.4</b> How nodes are named</a></li>
<li class="chapter" data-level="6.2.5" data-path="cha-building-models.html"><a href="cha-building-models.html#sec:why-use-node"><i class="fa fa-check"></i><b>6.2.5</b> Why use node names?</a></li>
<li class="chapter" data-level="6.2.6" data-path="cha-building-models.html"><a href="cha-building-models.html#sec:cdisdata"><i class="fa fa-check"></i><b>6.2.6</b> Checking if a node holds data</a></li>
</ul></li>
<li class="chapter" data-level="6.3" data-path="cha-building-models.html"><a href="cha-building-models.html#using-models-in-parallel"><i class="fa fa-check"></i><b>6.3</b> Using models in parallel</a></li>
</ul></li>
<li class="part"><span><b>III Algorithms in NIMBLE</b></span></li>
<li class="chapter" data-level="7" data-path="cha-mcmc.html"><a href="cha-mcmc.html"><i class="fa fa-check"></i><b>7</b> MCMC</a>
<ul>
<li class="chapter" data-level="7.1" data-path="cha-mcmc.html"><a href="cha-mcmc.html#sec:nimbleMCMC"><i class="fa fa-check"></i><b>7.1</b> One-line invocation of MCMC: <em>nimbleMCMC</em></a></li>
<li class="chapter" data-level="7.2" data-path="cha-mcmc.html"><a href="cha-mcmc.html#sec:mcmc-configuration"><i class="fa fa-check"></i><b>7.2</b> The MCMC configuration</a>
<ul>
<li class="chapter" data-level="7.2.1" data-path="cha-mcmc.html"><a href="cha-mcmc.html#sec:default-mcmc-conf"><i class="fa fa-check"></i><b>7.2.1</b> Default MCMC configuration</a></li>
<li class="chapter" data-level="7.2.2" data-path="cha-mcmc.html"><a href="cha-mcmc.html#sec:customizing-mcmc-conf"><i class="fa fa-check"></i><b>7.2.2</b> Customizing the MCMC configuration</a></li>
</ul></li>
<li class="chapter" data-level="7.3" data-path="cha-mcmc.html"><a href="cha-mcmc.html#sec:build-compile-mcmc"><i class="fa fa-check"></i><b>7.3</b> Building and compiling the MCMC</a></li>
<li class="chapter" data-level="7.4" data-path="cha-mcmc.html"><a href="cha-mcmc.html#sec:initMCMC"><i class="fa fa-check"></i><b>7.4</b> Initializing MCMC</a></li>
<li class="chapter" data-level="7.5" data-path="cha-mcmc.html"><a href="cha-mcmc.html#sec:runMCMC"><i class="fa fa-check"></i><b>7.5</b> User-friendly execution of MCMC algorithms: <em>runMCMC</em></a></li>
<li class="chapter" data-level="7.6" data-path="cha-mcmc.html"><a href="cha-mcmc.html#sec:executing-the-mcmc-algorithm"><i class="fa fa-check"></i><b>7.6</b> Running the MCMC</a>
<ul>
<li class="chapter" data-level="7.6.1" data-path="cha-mcmc.html"><a href="cha-mcmc.html#sec:mcmc-rerun"><i class="fa fa-check"></i><b>7.6.1</b> Rerunning versus restarting an MCMC</a></li>
<li class="chapter" data-level="7.6.2" data-path="cha-mcmc.html"><a href="cha-mcmc.html#sec:sampler-time"><i class="fa fa-check"></i><b>7.6.2</b> Measuring sampler computation times: <em>getTimes</em></a></li>
<li class="chapter" data-level="7.6.3" data-path="cha-mcmc.html"><a href="cha-mcmc.html#assessing-the-adaption-process-of-rw-and-rw_block-samplers"><i class="fa fa-check"></i><b>7.6.3</b> Assessing the adaption process of <em>RW</em> and <em>RW_block</em> samplers</a></li>
</ul></li>
<li class="chapter" data-level="7.7" data-path="cha-mcmc.html"><a href="cha-mcmc.html#sec:extracting-samples"><i class="fa fa-check"></i><b>7.7</b> Extracting MCMC samples</a></li>
<li class="chapter" data-level="7.8" data-path="cha-mcmc.html"><a href="cha-mcmc.html#sec:WAIC"><i class="fa fa-check"></i><b>7.8</b> Calculating WAIC</a></li>
<li class="chapter" data-level="7.9" data-path="cha-mcmc.html"><a href="cha-mcmc.html#k-fold-cross-validation"><i class="fa fa-check"></i><b>7.9</b> k-fold cross-validation</a></li>
<li class="chapter" data-level="7.10" data-path="cha-mcmc.html"><a href="cha-mcmc.html#sec:rjmcmc"><i class="fa fa-check"></i><b>7.10</b> Variable selection using Reversible Jump MCMC</a>
<ul>
<li class="chapter" data-level="7.10.1" data-path="cha-mcmc.html"><a href="cha-mcmc.html#sec:rjmcmc-indicator"><i class="fa fa-check"></i><b>7.10.1</b> Using indicator variables</a></li>
<li class="chapter" data-level="7.10.2" data-path="cha-mcmc.html"><a href="cha-mcmc.html#sec:rjmcmc-no-indicator"><i class="fa fa-check"></i><b>7.10.2</b> Without indicator variables</a></li>
</ul></li>
<li class="chapter" data-level="7.11" data-path="cha-mcmc.html"><a href="cha-mcmc.html#sec:samplers-provided"><i class="fa fa-check"></i><b>7.11</b> Samplers provided with NIMBLE</a>
<ul>
<li class="chapter" data-level="7.11.1" data-path="cha-mcmc.html"><a href="cha-mcmc.html#conjugate-gibbs-samplers"><i class="fa fa-check"></i><b>7.11.1</b> Conjugate (‘Gibbs’) samplers</a></li>
<li class="chapter" data-level="7.11.2" data-path="cha-mcmc.html"><a href="cha-mcmc.html#subsec:HMC"><i class="fa fa-check"></i><b>7.11.2</b> Hamiltonian Monte Carlo (HMC)</a></li>
<li class="chapter" data-level="7.11.3" data-path="cha-mcmc.html"><a href="cha-mcmc.html#particle-filter-samplers"><i class="fa fa-check"></i><b>7.11.3</b> Particle filter samplers</a></li>
<li class="chapter" data-level="7.11.4" data-path="cha-mcmc.html"><a href="cha-mcmc.html#customized-log-likelihood-evaluations-rw_llfunction-sampler"><i class="fa fa-check"></i><b>7.11.4</b> Customized log-likelihood evaluations: <em>RW_llFunction sampler</em></a></li>
</ul></li>
<li class="chapter" data-level="7.12" data-path="cha-mcmc.html"><a href="cha-mcmc.html#sec:mcmc-example-litters"><i class="fa fa-check"></i><b>7.12</b> Detailed MCMC example: <em>litters</em></a></li>
<li class="chapter" data-level="7.13" data-path="cha-mcmc.html"><a href="cha-mcmc.html#mcmc-suite-compare-mcmcs"><i class="fa fa-check"></i><b>7.13</b> Comparing different MCMCs with <em>MCMCsuite</em> and <em>compareMCMCs</em></a></li>
<li class="chapter" data-level="7.14" data-path="cha-mcmc.html"><a href="cha-mcmc.html#running-mcmc-chains-in-parallel"><i class="fa fa-check"></i><b>7.14</b> Running MCMC chains in parallel</a></li>
</ul></li>
<li class="chapter" data-level="8" data-path="cha-algos-provided.html"><a href="cha-algos-provided.html"><i class="fa fa-check"></i><b>8</b> Particle Filters, PMCMC, MCEM, Laplace approximation and quadrature</a>
<ul>
<li class="chapter" data-level="8.1" data-path="cha-algos-provided.html"><a href="cha-algos-provided.html#particle-filters-sequential-monte-carlo-and-iterated-filtering"><i class="fa fa-check"></i><b>8.1</b> Particle filters / sequential Monte Carlo and iterated filtering</a>
<ul>
<li class="chapter" data-level="8.1.1" data-path="cha-algos-provided.html"><a href="cha-algos-provided.html#filtering-algorithms"><i class="fa fa-check"></i><b>8.1.1</b> Filtering algorithms</a></li>
<li class="chapter" data-level="8.1.2" data-path="cha-algos-provided.html"><a href="cha-algos-provided.html#sec:particle-mcmc"><i class="fa fa-check"></i><b>8.1.2</b> Particle MCMC (PMCMC)</a></li>
</ul></li>
<li class="chapter" data-level="8.2" data-path="cha-algos-provided.html"><a href="cha-algos-provided.html#monte-carlo-expectation-maximization-mcem"><i class="fa fa-check"></i><b>8.2</b> Monte Carlo Expectation Maximization (MCEM)</a>
<ul>
<li class="chapter" data-level="8.2.1" data-path="cha-algos-provided.html"><a href="cha-algos-provided.html#sec:estimate-mcem-cov"><i class="fa fa-check"></i><b>8.2.1</b> Estimating the asymptotic covariance From MCEM</a></li>
</ul></li>
<li class="chapter" data-level="8.3" data-path="cha-algos-provided.html"><a href="cha-algos-provided.html#laplace-approximation-and-adaptive-gauss-hermite-quadrature"><i class="fa fa-check"></i><b>8.3</b> Laplace approximation and adaptive Gauss-Hermite quadrature</a></li>
</ul></li>
<li class="chapter" data-level="9" data-path="cha-spatial.html"><a href="cha-spatial.html"><i class="fa fa-check"></i><b>9</b> Spatial models</a>
<ul>
<li class="chapter" data-level="9.1" data-path="cha-spatial.html"><a href="cha-spatial.html#intrinsic-gaussian-car-model-dcar_normal"><i class="fa fa-check"></i><b>9.1</b> Intrinsic Gaussian CAR model: <em>dcar_normal</em></a>
<ul>
<li class="chapter" data-level="9.1.1" data-path="cha-spatial.html"><a href="cha-spatial.html#specification-and-density"><i class="fa fa-check"></i><b>9.1.1</b> Specification and density</a></li>
<li class="chapter" data-level="9.1.2" data-path="cha-spatial.html"><a href="cha-spatial.html#example"><i class="fa fa-check"></i><b>9.1.2</b> Example</a></li>
</ul></li>
<li class="chapter" data-level="9.2" data-path="cha-spatial.html"><a href="cha-spatial.html#proper-gaussian-car-model-dcar_proper"><i class="fa fa-check"></i><b>9.2</b> Proper Gaussian CAR model: <em>dcar_proper</em></a>
<ul>
<li class="chapter" data-level="9.2.1" data-path="cha-spatial.html"><a href="cha-spatial.html#specification-and-density-1"><i class="fa fa-check"></i><b>9.2.1</b> Specification and density</a></li>
<li class="chapter" data-level="9.2.2" data-path="cha-spatial.html"><a href="cha-spatial.html#example-1"><i class="fa fa-check"></i><b>9.2.2</b> Example</a></li>
</ul></li>
<li class="chapter" data-level="9.3" data-path="cha-spatial.html"><a href="cha-spatial.html#sec:spatial-mcmc-sampling-car"><i class="fa fa-check"></i><b>9.3</b> MCMC Sampling of CAR models</a>
<ul>
<li class="chapter" data-level="9.3.1" data-path="cha-spatial.html"><a href="cha-spatial.html#initial-values"><i class="fa fa-check"></i><b>9.3.1</b> Initial values</a></li>
<li class="chapter" data-level="9.3.2" data-path="cha-spatial.html"><a href="cha-spatial.html#zero-neighbor-regions"><i class="fa fa-check"></i><b>9.3.2</b> Zero-neighbor regions</a></li>
<li class="chapter" data-level="9.3.3" data-path="cha-spatial.html"><a href="cha-spatial.html#zero-mean-constraint"><i class="fa fa-check"></i><b>9.3.3</b> Zero-mean constraint</a></li>
</ul></li>
</ul></li>
<li class="chapter" data-level="10" data-path="cha-bnp.html"><a href="cha-bnp.html"><i class="fa fa-check"></i><b>10</b> Bayesian nonparametric models</a>
<ul>
<li class="chapter" data-level="10.1" data-path="cha-bnp.html"><a href="cha-bnp.html#sec:bnpmixtures"><i class="fa fa-check"></i><b>10.1</b> Bayesian nonparametric mixture models</a></li>
<li class="chapter" data-level="10.2" data-path="cha-bnp.html"><a href="cha-bnp.html#sec:crp"><i class="fa fa-check"></i><b>10.2</b> Chinese Restaurant Process model</a>
<ul>
<li class="chapter" data-level="10.2.1" data-path="cha-bnp.html"><a href="cha-bnp.html#specification-and-density-2"><i class="fa fa-check"></i><b>10.2.1</b> Specification and density</a></li>
<li class="chapter" data-level="10.2.2" data-path="cha-bnp.html"><a href="cha-bnp.html#sec:excrp"><i class="fa fa-check"></i><b>10.2.2</b> Example</a></li>
<li class="chapter" data-level="10.2.3" data-path="cha-bnp.html"><a href="cha-bnp.html#sec:extensionscrp"><i class="fa fa-check"></i><b>10.2.3</b> Extensions</a></li>
</ul></li>
<li class="chapter" data-level="10.3" data-path="cha-bnp.html"><a href="cha-bnp.html#sec:sb"><i class="fa fa-check"></i><b>10.3</b> Stick-breaking model</a>
<ul>
<li class="chapter" data-level="10.3.1" data-path="cha-bnp.html"><a href="cha-bnp.html#specification-and-function"><i class="fa fa-check"></i><b>10.3.1</b> Specification and function</a></li>
<li class="chapter" data-level="10.3.2" data-path="cha-bnp.html"><a href="cha-bnp.html#sec:exsb"><i class="fa fa-check"></i><b>10.3.2</b> Example</a></li>
</ul></li>
<li class="chapter" data-level="10.4" data-path="cha-bnp.html"><a href="cha-bnp.html#mcmc-sampling-of-bnp-models"><i class="fa fa-check"></i><b>10.4</b> MCMC sampling of BNP models</a>
<ul>
<li class="chapter" data-level="10.4.1" data-path="cha-bnp.html"><a href="cha-bnp.html#sec:mcmcdcrp"><i class="fa fa-check"></i><b>10.4.1</b> Sampling CRP models</a></li>
<li class="chapter" data-level="10.4.2" data-path="cha-bnp.html"><a href="cha-bnp.html#sec:mcmcsb"><i class="fa fa-check"></i><b>10.4.2</b> Sampling stick-breaking models</a></li>
</ul></li>
</ul></li>
<li class="part"><span><b>IV Programming with NIMBLE</b></span></li>
<li class="chapter" data-level="" data-path="overview.html"><a href="overview.html"><i class="fa fa-check"></i>Overview</a></li>
<li class="chapter" data-level="11" data-path="cha-RCfunctions.html"><a href="cha-RCfunctions.html"><i class="fa fa-check"></i><b>11</b> Writing simple nimbleFunctions</a>
<ul>
<li class="chapter" data-level="11.1" data-path="cha-RCfunctions.html"><a href="cha-RCfunctions.html#sec:RC-intro"><i class="fa fa-check"></i><b>11.1</b> Introduction to simple nimbleFunctions</a></li>
<li class="chapter" data-level="11.2" data-path="cha-RCfunctions.html"><a href="cha-RCfunctions.html#sec:r-fiunctions-implemented"><i class="fa fa-check"></i><b>11.2</b> R functions (or variants) implemented in NIMBLE</a>
<ul>
<li class="chapter" data-level="11.2.1" data-path="cha-RCfunctions.html"><a href="cha-RCfunctions.html#finding-help-for-nimbles-versions-of-r-functions"><i class="fa fa-check"></i><b>11.2.1</b> Finding help for NIMBLE’s versions of R functions</a></li>
<li class="chapter" data-level="11.2.2" data-path="cha-RCfunctions.html"><a href="cha-RCfunctions.html#basic-operations"><i class="fa fa-check"></i><b>11.2.2</b> Basic operations</a></li>
<li class="chapter" data-level="11.2.3" data-path="cha-RCfunctions.html"><a href="cha-RCfunctions.html#sec:basic-math-linear"><i class="fa fa-check"></i><b>11.2.3</b> Math and linear algebra</a></li>
<li class="chapter" data-level="11.2.4" data-path="cha-RCfunctions.html"><a href="cha-RCfunctions.html#sec:nimble-dist-funs"><i class="fa fa-check"></i><b>11.2.4</b> Distribution functions</a></li>
<li class="chapter" data-level="11.2.5" data-path="cha-RCfunctions.html"><a href="cha-RCfunctions.html#sec:basic-flow-control"><i class="fa fa-check"></i><b>11.2.5</b> Flow control: <em>if-then-else</em>, <em>for</em>, <em>while</em>, and <em>stop</em></a></li>
<li class="chapter" data-level="11.2.6" data-path="cha-RCfunctions.html"><a href="cha-RCfunctions.html#sec:print"><i class="fa fa-check"></i><b>11.2.6</b> <em>print</em> and <em>cat</em></a></li>
<li class="chapter" data-level="11.2.7" data-path="cha-RCfunctions.html"><a href="cha-RCfunctions.html#sec:check-user-interr"><i class="fa fa-check"></i><b>11.2.7</b> Checking for user interrupts: <em>checkInterrupt</em></a></li>
<li class="chapter" data-level="11.2.8" data-path="cha-RCfunctions.html"><a href="cha-RCfunctions.html#optimization-optim-and-nimoptim"><i class="fa fa-check"></i><b>11.2.8</b> Optimization: <em>optim</em> and <em>nimOptim</em></a></li>
<li class="chapter" data-level="11.2.9" data-path="cha-RCfunctions.html"><a href="cha-RCfunctions.html#integration-integrate-and-nimintegrate"><i class="fa fa-check"></i><b>11.2.9</b> Integration: <em>integrate</em> and <em>nimIntegrate</em></a></li>
<li class="chapter" data-level="11.2.10" data-path="cha-RCfunctions.html"><a href="cha-RCfunctions.html#sec:altern-keyw-some"><i class="fa fa-check"></i><b>11.2.10</b> ‘nim’ synonyms for some functions</a></li>
</ul></li>
<li class="chapter" data-level="11.3" data-path="cha-RCfunctions.html"><a href="cha-RCfunctions.html#sec:how-nimble-handles"><i class="fa fa-check"></i><b>11.3</b> How NIMBLE handles types of variables</a>
<ul>
<li class="chapter" data-level="11.3.1" data-path="cha-RCfunctions.html"><a href="cha-RCfunctions.html#sec:nimbleList-RCFuns"><i class="fa fa-check"></i><b>11.3.1</b> nimbleList data structures</a></li>
<li class="chapter" data-level="11.3.2" data-path="cha-RCfunctions.html"><a href="cha-RCfunctions.html#sec:how-types-work"><i class="fa fa-check"></i><b>11.3.2</b> How numeric types work</a></li>
</ul></li>
<li class="chapter" data-level="11.4" data-path="cha-RCfunctions.html"><a href="cha-RCfunctions.html#sec:decl-argum-return"><i class="fa fa-check"></i><b>11.4</b> Declaring argument and return types</a></li>
<li class="chapter" data-level="11.5" data-path="cha-RCfunctions.html"><a href="cha-RCfunctions.html#sec:comp-nimbl-pass"><i class="fa fa-check"></i><b>11.5</b> Compiled nimbleFunctions pass arguments by reference</a></li>
<li class="chapter" data-level="11.6" data-path="cha-RCfunctions.html"><a href="cha-RCfunctions.html#sec:calling-external-code"><i class="fa fa-check"></i><b>11.6</b> Calling external compiled code</a></li>
<li class="chapter" data-level="11.7" data-path="cha-RCfunctions.html"><a href="cha-RCfunctions.html#sec:calling-R-code"><i class="fa fa-check"></i><b>11.7</b> Calling uncompiled R functions from compiled nimbleFunctions</a></li>
</ul></li>
<li class="chapter" data-level="12" data-path="cha-user-defined.html"><a href="cha-user-defined.html"><i class="fa fa-check"></i><b>12</b> Creating user-defined distributions and functions for models</a>
<ul>
<li class="chapter" data-level="12.1" data-path="cha-user-defined.html"><a href="cha-user-defined.html#sec:user-functions"><i class="fa fa-check"></i><b>12.1</b> User-defined functions</a></li>
<li class="chapter" data-level="12.2" data-path="cha-user-defined.html"><a href="cha-user-defined.html#sec:user-distributions"><i class="fa fa-check"></i><b>12.2</b> User-defined distributions</a>
<ul>
<li class="chapter" data-level="12.2.1" data-path="cha-user-defined.html"><a href="cha-user-defined.html#sec:registerDistributions"><i class="fa fa-check"></i><b>12.2.1</b> Using <em>registerDistributions</em> for alternative parameterizations and providing other information</a></li>
</ul></li>
<li class="chapter" data-level="12.3" data-path="cha-user-defined.html"><a href="cha-user-defined.html#sec:adv-user-def"><i class="fa fa-check"></i><b>12.3</b> Advanced user-defined functions and distributions</a></li>
<li class="chapter" data-level="12.4" data-path="cha-user-defined.html"><a href="cha-user-defined.html#sec:user-macros"><i class="fa fa-check"></i><b>12.4</b> User-defined model macros</a></li>
</ul></li>
<li class="chapter" data-level="13" data-path="cha-using-models.html"><a href="cha-using-models.html"><i class="fa fa-check"></i><b>13</b> Working with NIMBLE models</a>
<ul>
<li class="chapter" data-level="13.1" data-path="cha-using-models.html"><a href="cha-using-models.html#sec:accessing-variables"><i class="fa fa-check"></i><b>13.1</b> The variables and nodes in a NIMBLE model</a>
<ul>
<li class="chapter" data-level="13.1.1" data-path="cha-using-models.html"><a href="cha-using-models.html#sec:get-nodes"><i class="fa fa-check"></i><b>13.1.1</b> Determining the nodes in a model</a></li>
<li class="chapter" data-level="13.1.2" data-path="cha-using-models.html"><a href="cha-using-models.html#sec:introduced-nodes"><i class="fa fa-check"></i><b>13.1.2</b> Understanding lifted nodes</a></li>
<li class="chapter" data-level="13.1.3" data-path="cha-using-models.html"><a href="cha-using-models.html#sec:cdgetdependencies"><i class="fa fa-check"></i><b>13.1.3</b> Determining dependencies in a model</a></li>
</ul></li>
<li class="chapter" data-level="13.2" data-path="cha-using-models.html"><a href="cha-using-models.html#sec:nodeInfo"><i class="fa fa-check"></i><b>13.2</b> Accessing information about nodes and variables</a>
<ul>
<li class="chapter" data-level="13.2.1" data-path="cha-using-models.html"><a href="cha-using-models.html#getting-distributional-information-about-a-node"><i class="fa fa-check"></i><b>13.2.1</b> Getting distributional information about a node</a></li>
<li class="chapter" data-level="13.2.2" data-path="cha-using-models.html"><a href="cha-using-models.html#getting-information-about-a-distribution"><i class="fa fa-check"></i><b>13.2.2</b> Getting information about a distribution</a></li>
<li class="chapter" data-level="13.2.3" data-path="cha-using-models.html"><a href="cha-using-models.html#sec:getParam"><i class="fa fa-check"></i><b>13.2.3</b> Getting distribution parameter values for a node</a></li>
<li class="chapter" data-level="13.2.4" data-path="cha-using-models.html"><a href="cha-using-models.html#sec:getBound"><i class="fa fa-check"></i><b>13.2.4</b> Getting distribution bounds for a node</a></li>
</ul></li>
<li class="chapter" data-level="13.3" data-path="cha-using-models.html"><a href="cha-using-models.html#sec:cdcalc-cdsim-cdgetl"><i class="fa fa-check"></i><b>13.3</b> Carrying out model calculations</a>
<ul>
<li class="chapter" data-level="13.3.1" data-path="cha-using-models.html"><a href="cha-using-models.html#core-model-operations-calculation-and-simulation"><i class="fa fa-check"></i><b>13.3.1</b> Core model operations: calculation and simulation</a></li>
<li class="chapter" data-level="13.3.2" data-path="cha-using-models.html"><a href="cha-using-models.html#sec:cdsimn-cdcalcn-cdget"><i class="fa fa-check"></i><b>13.3.2</b> Pre-defined nimbleFunctions for operating on model nodes: <em>simNodes</em>, <em>calcNodes</em>, and <em>getLogProbNodes</em></a></li>
<li class="chapter" data-level="13.3.3" data-path="cha-using-models.html"><a href="cha-using-models.html#sec:access-log-prob"><i class="fa fa-check"></i><b>13.3.3</b> Accessing log probabilities via <em>logProb</em> variables</a></li>
</ul></li>
</ul></li>
<li class="chapter" data-level="14" data-path="cha-data-structures.html"><a href="cha-data-structures.html"><i class="fa fa-check"></i><b>14</b> Data structures in NIMBLE</a>
<ul>
<li class="chapter" data-level="14.1" data-path="cha-data-structures.html"><a href="cha-data-structures.html#sec:modelValues-struct"><i class="fa fa-check"></i><b>14.1</b> The modelValues data structure</a>
<ul>
<li class="chapter" data-level="14.1.1" data-path="cha-data-structures.html"><a href="cha-data-structures.html#creating-modelvalues-objects"><i class="fa fa-check"></i><b>14.1.1</b> Creating modelValues objects</a></li>
<li class="chapter" data-level="14.1.2" data-path="cha-data-structures.html"><a href="cha-data-structures.html#sec:access-cont-modelv"><i class="fa fa-check"></i><b>14.1.2</b> Accessing contents of modelValues</a></li>
</ul></li>
<li class="chapter" data-level="14.2" data-path="cha-data-structures.html"><a href="cha-data-structures.html#sec:nimbleLists"><i class="fa fa-check"></i><b>14.2</b> The nimbleList data structure</a>
<ul>
<li class="chapter" data-level="14.2.1" data-path="cha-data-structures.html"><a href="cha-data-structures.html#sec:predef-nimbleLists"><i class="fa fa-check"></i><b>14.2.1</b> Pre-defined nimbleList types</a></li>
<li class="chapter" data-level="14.2.2" data-path="cha-data-structures.html"><a href="cha-data-structures.html#sec:eigen-nimFunctions"><i class="fa fa-check"></i><b>14.2.2</b> Using <em>eigen</em> and <em>svd</em> in nimbleFunctions</a></li>
</ul></li>
</ul></li>
<li class="chapter" data-level="15" data-path="cha-progr-with-models.html"><a href="cha-progr-with-models.html"><i class="fa fa-check"></i><b>15</b> Writing nimbleFunctions to interact with models</a>
<ul>
<li class="chapter" data-level="15.1" data-path="cha-progr-with-models.html"><a href="cha-progr-with-models.html#sec:writ-nimble-funct"><i class="fa fa-check"></i><b>15.1</b> Overview</a></li>
<li class="chapter" data-level="15.2" data-path="cha-progr-with-models.html"><a href="cha-progr-with-models.html#sec:using-comp-nimbl"><i class="fa fa-check"></i><b>15.2</b> Using and compiling nimbleFunctions</a></li>
<li class="chapter" data-level="15.3" data-path="cha-progr-with-models.html"><a href="cha-progr-with-models.html#writing-setup-code"><i class="fa fa-check"></i><b>15.3</b> Writing setup code</a>
<ul>
<li class="chapter" data-level="15.3.1" data-path="cha-progr-with-models.html"><a href="cha-progr-with-models.html#useful-tools-for-setup-functions"><i class="fa fa-check"></i><b>15.3.1</b> Useful tools for setup functions</a></li>
<li class="chapter" data-level="15.3.2" data-path="cha-progr-with-models.html"><a href="cha-progr-with-models.html#sec:access-modify-numer"><i class="fa fa-check"></i><b>15.3.2</b> Accessing and modifying numeric values from setup</a></li>
<li class="chapter" data-level="15.3.3" data-path="cha-progr-with-models.html"><a href="cha-progr-with-models.html#determining-numeric-types-in-nimblefunctions"><i class="fa fa-check"></i><b>15.3.3</b> Determining numeric types in nimbleFunctions</a></li>
<li class="chapter" data-level="15.3.4" data-path="cha-progr-with-models.html"><a href="cha-progr-with-models.html#sec:determ-pers-texttts"><i class="fa fa-check"></i><b>15.3.4</b> Control of setup outputs</a></li>
</ul></li>
<li class="chapter" data-level="15.4" data-path="cha-progr-with-models.html"><a href="cha-progr-with-models.html#sec:nimble-lang-comp"><i class="fa fa-check"></i><b>15.4</b> Writing run code</a>
<ul>
<li class="chapter" data-level="15.4.1" data-path="cha-progr-with-models.html"><a href="cha-progr-with-models.html#sec:driv-models:-calc"><i class="fa fa-check"></i><b>15.4.1</b> Driving models: <em>calculate</em>, <em>calculateDiff</em>, <em>simulate</em>, <em>getLogProb</em></a></li>
<li class="chapter" data-level="15.4.2" data-path="cha-progr-with-models.html"><a href="cha-progr-with-models.html#getting-and-setting-variable-and-node-values"><i class="fa fa-check"></i><b>15.4.2</b> Getting and setting variable and node values</a></li>
<li class="chapter" data-level="15.4.3" data-path="cha-progr-with-models.html"><a href="cha-progr-with-models.html#getting-parameter-values-and-node-bounds"><i class="fa fa-check"></i><b>15.4.3</b> Getting parameter values and node bounds</a></li>
<li class="chapter" data-level="15.4.4" data-path="cha-progr-with-models.html"><a href="cha-progr-with-models.html#sec:access-model-modelv"><i class="fa fa-check"></i><b>15.4.4</b> Using modelValues objects</a></li>
<li class="chapter" data-level="15.4.5" data-path="cha-progr-with-models.html"><a href="cha-progr-with-models.html#sec:using-model-variable"><i class="fa fa-check"></i><b>15.4.5</b> Using model variables and modelValues in expressions</a></li>
<li class="chapter" data-level="15.4.6" data-path="cha-progr-with-models.html"><a href="cha-progr-with-models.html#sec:incl-other-meth"><i class="fa fa-check"></i><b>15.4.6</b> Including other methods in a nimbleFunction</a></li>
<li class="chapter" data-level="15.4.7" data-path="cha-progr-with-models.html"><a href="cha-progr-with-models.html#sec:using-other-nimbl"><i class="fa fa-check"></i><b>15.4.7</b> Using other nimbleFunctions</a></li>
<li class="chapter" data-level="15.4.8" data-path="cha-progr-with-models.html"><a href="cha-progr-with-models.html#sec:virt-nimbl-nimbl"><i class="fa fa-check"></i><b>15.4.8</b> Virtual nimbleFunctions and nimbleFunctionLists</a></li>
<li class="chapter" data-level="15.4.9" data-path="cha-progr-with-models.html"><a href="cha-progr-with-models.html#character-objects"><i class="fa fa-check"></i><b>15.4.9</b> Character objects</a></li>
<li class="chapter" data-level="15.4.10" data-path="cha-progr-with-models.html"><a href="cha-progr-with-models.html#sec:user-defined-data"><i class="fa fa-check"></i><b>15.4.10</b> User-defined data structures</a></li>
</ul></li>
<li class="chapter" data-level="15.5" data-path="cha-progr-with-models.html"><a href="cha-progr-with-models.html#sec:user-samplers"><i class="fa fa-check"></i><b>15.5</b> Example: writing user-defined samplers to extend NIMBLE’s MCMC engine</a>
<ul>
<li class="chapter" data-level="15.5.1" data-path="cha-progr-with-models.html"><a href="cha-progr-with-models.html#user-defined-samplers-and-posterior-predictive-nodes"><i class="fa fa-check"></i><b>15.5.1</b> User-defined samplers and posterior predictive nodes</a></li>
</ul></li>
<li class="chapter" data-level="15.6" data-path="cha-progr-with-models.html"><a href="cha-progr-with-models.html#copying-nimblefunctions-and-nimble-models"><i class="fa fa-check"></i><b>15.6</b> Copying nimbleFunctions (and NIMBLE models)</a></li>
<li class="chapter" data-level="15.7" data-path="cha-progr-with-models.html"><a href="cha-progr-with-models.html#sec:debugging"><i class="fa fa-check"></i><b>15.7</b> Debugging nimbleFunctions</a></li>
<li class="chapter" data-level="15.8" data-path="cha-progr-with-models.html"><a href="cha-progr-with-models.html#timing-nimblefunctions-with-run.time"><i class="fa fa-check"></i><b>15.8</b> Timing nimbleFunctions with <em>run.time</em></a></li>
<li class="chapter" data-level="15.9" data-path="cha-progr-with-models.html"><a href="cha-progr-with-models.html#clearing-and-unloading-compiled-objects"><i class="fa fa-check"></i><b>15.9</b> Clearing and unloading compiled objects</a></li>
<li class="chapter" data-level="15.10" data-path="cha-progr-with-models.html"><a href="cha-progr-with-models.html#reducing-memory-usage"><i class="fa fa-check"></i><b>15.10</b> Reducing memory usage</a></li>
</ul></li>
<li class="part"><span><b>V Automatic Derivatives in NIMBLE</b></span></li>
<li class="chapter" data-level="16" data-path="cha-AD.html"><a href="cha-AD.html"><i class="fa fa-check"></i><b>16</b> Automatic Derivatives</a>
<ul>
<li class="chapter" data-level="16.1" data-path="cha-AD.html"><a href="cha-AD.html#sec:use-derivs"><i class="fa fa-check"></i><b>16.1</b> How to turn on derivatives in a model</a>
<ul>
<li class="chapter" data-level="16.1.1" data-path="cha-AD.html"><a href="cha-AD.html#finish-setting-up-the-glmm-example"><i class="fa fa-check"></i><b>16.1.1</b> Finish setting up the GLMM example</a></li>
</ul></li>
<li class="chapter" data-level="16.2" data-path="cha-AD.html"><a href="cha-AD.html#sec:AD-laplace"><i class="fa fa-check"></i><b>16.2</b> How to use Laplace approximation and adaptive Gauss-Hermite quadrature</a>
<ul>
<li class="chapter" data-level="16.2.1" data-path="cha-AD.html"><a href="cha-AD.html#using-the-laplace-approximation-methods-directly"><i class="fa fa-check"></i><b>16.2.1</b> Using the Laplace approximation methods directly</a></li>
<li class="chapter" data-level="16.2.2" data-path="cha-AD.html"><a href="cha-AD.html#changing-the-optimization-methods"><i class="fa fa-check"></i><b>16.2.2</b> Changing the optimization methods</a></li>
</ul></li>
<li class="chapter" data-level="16.3" data-path="cha-AD.html"><a href="cha-AD.html#sec:AD-user-def"><i class="fa fa-check"></i><b>16.3</b> How to support derivatives in user-defined functions and distributions</a></li>
<li class="chapter" data-level="16.4" data-path="cha-AD.html"><a href="cha-AD.html#what-operations-are-and-arent-supported-for-ad"><i class="fa fa-check"></i><b>16.4</b> What operations are and aren’t supported for AD</a></li>
<li class="chapter" data-level="16.5" data-path="cha-AD.html"><a href="cha-AD.html#basics-of-obtaining-derivatives-in-nimblefunctions"><i class="fa fa-check"></i><b>16.5</b> Basics of obtaining derivatives in <code>nimbleFunctions</code></a>
<ul>
<li class="chapter" data-level="16.5.1" data-path="cha-AD.html"><a href="cha-AD.html#checking-derivatives-with-uncompiled-execution"><i class="fa fa-check"></i><b>16.5.1</b> Checking derivatives with uncompiled execution</a></li>
<li class="chapter" data-level="16.5.2" data-path="cha-AD.html"><a href="cha-AD.html#sec:AD-holding-out"><i class="fa fa-check"></i><b>16.5.2</b> Holding some local variables out of derivative tracking</a></li>
<li class="chapter" data-level="16.5.3" data-path="cha-AD.html"><a href="cha-AD.html#sec:AD-multiple-NF"><i class="fa fa-check"></i><b>16.5.3</b> Using AD with multiple nimbleFunctions</a></li>
<li class="chapter" data-level="16.5.4" data-path="cha-AD.html"><a href="cha-AD.html#sec:understanding-more-AD"><i class="fa fa-check"></i><b>16.5.4</b> Understanding more about how AD works: <em>taping</em> of operations</a></li>
<li class="chapter" data-level="16.5.5" data-path="cha-AD.html"><a href="cha-AD.html#resetting-a-nimderivs-call"><i class="fa fa-check"></i><b>16.5.5</b> Resetting a <code>nimDerivs</code> call</a></li>
<li class="chapter" data-level="16.5.6" data-path="cha-AD.html"><a href="cha-AD.html#a-note-on-performance-benchmarking"><i class="fa fa-check"></i><b>16.5.6</b> A note on performance benchmarking</a></li>
</ul></li>
<li class="chapter" data-level="16.6" data-path="cha-AD.html"><a href="cha-AD.html#advanced-uses-double-taping"><i class="fa fa-check"></i><b>16.6</b> Advanced uses: double taping</a></li>
<li class="chapter" data-level="16.7" data-path="cha-AD.html"><a href="cha-AD.html#derivatives-involving-model-calculations"><i class="fa fa-check"></i><b>16.7</b> Derivatives involving model calculations</a>
<ul>
<li class="chapter" data-level="16.7.1" data-path="cha-AD.html"><a href="cha-AD.html#method-1-nimderivs-of-modelcalculate"><i class="fa fa-check"></i><b>16.7.1</b> Method 1: <code>nimDerivs</code> of <code>model$calculate</code></a></li>
<li class="chapter" data-level="16.7.2" data-path="cha-AD.html"><a href="cha-AD.html#method-2-nimderivs-of-a-method-that-calls-modelcalculate"><i class="fa fa-check"></i><b>16.7.2</b> Method 2: <code>nimDerivs</code> of a method that calls <code>model$calculate</code></a></li>
</ul></li>
<li class="chapter" data-level="16.8" data-path="cha-AD.html"><a href="cha-AD.html#sec:parameter-transform"><i class="fa fa-check"></i><b>16.8</b> Parameter transformations</a></li>
</ul></li>
<li class="chapter" data-level="17" data-path="example-maximum-likelihood-estimation-using-optim-with-gradients-from-nimderivs..html"><a href="example-maximum-likelihood-estimation-using-optim-with-gradients-from-nimderivs..html"><i class="fa fa-check"></i><b>17</b> Example: maximum likelihood estimation using <code>optim</code> with gradients from <code>nimDerivs</code>.</a></li>
<li class="chapter" data-level="" data-path="references.html"><a href="references.html"><i class="fa fa-check"></i>References</a></li>
</ul>
</nav>
</div>
<div class="book-body">
<div class="body-inner">
<div class="book-header" role="navigation">
<h1>
<i class="fa fa-circle-o-notch fa-spin"></i><a href="./"></a>
</h1>
</div>
<div class="page-wrapper" tabindex="-1" role="main">
<div class="page-inner">
<section class="normal" id="section-">
<div id="references" class="section level1 unnumbered hasAnchor">
<h1>References<a href="references.html#references" class="anchor-section" aria-label="Anchor link to header"></a></h1>
<div id="refs" class="references csl-bib-body hanging-indent" entry-spacing="0">
<div id="ref-Andrieu_Doucet_Holenstein_2010" class="csl-entry">
Andrieu, Christophe, Arnaud Doucet, and Roman Holenstein. 2010. <span>“Particle <span>M</span>arkov Chain <span>M</span>onte <span>C</span>arlo Methods.”</span> <em>Journal of the Royal Statistical Society: Series B (Statistical Methodology)</em> 72 (3): 269--342. <a href="https://doi.org/10.1111/j.1467-9868.2009.00736.x">https://doi.org/10.1111/j.1467-9868.2009.00736.x</a>.
</div>
<div id="ref-Ariyo_etal_2019" class="csl-entry">
Ariyo, Oludare, Adrian Quintero, Johanna Muñoz, Geert Verbeke, and Emmanuel Lesaffre. 2020. <span>“Bayesian Model Selection in Linear Mixed Models for Longitudinal Data.”</span> <em>Journal of Applied Statistics</em> 47 (5): 890–913. <a href="https://doi.org/10.1080/02664763.2019.1657814">https://doi.org/10.1080/02664763.2019.1657814</a>.
</div>
<div id="ref-Banerjee_etal_2015" class="csl-entry">
Banerjee, S., B. P. Carlin, and A. E. Gelfand. 2015. <em>Hierarchical Modeling and Analysis for Spatial Data</em>. 2nd ed. Boca Raton: Chapman & Hall.
</div>
<div id="ref-bell-22" class="csl-entry">
Bell, B. 2022. <span>“<span>CppAD</span>: <span>A</span> <span>Package</span> for <span>Differentiation</span> of <span>C</span>++ <span>Algorithms</span>.”</span> <a href="https://www.coin-or.org/CppAD">www.coin-or.org/CppAD</a>.
</div>
<div id="ref-blackwell_mcqueen_73" class="csl-entry">
Blackwell, D, and J MacQueen. 1973. <span>“Ferguson Distributions via <span>P</span>ólya Urn Schemes.”</span> <em>The Annals of Statistics</em> 1: 353–55.
</div>
<div id="ref-borchers-22" class="csl-entry">
Borchers, Hans W. 2022. <em>Pracma: Practical Numerical Math Functions</em>. <a href="https://CRAN.R-project.org/package=pracma">https://CRAN.R-project.org/package=pracma</a>.
</div>
<div id="ref-Caffo_etal_2005" class="csl-entry">
Caffo, Brian S., Wolfgang Jank, and Galin L. Jones. 2005. <span>“Ascent-<span>Based</span> <span>Monte</span> <span>Carlo</span> <span>Expectation</span>-<span>Maximization</span>.”</span> <em>Journal of the Royal Statistical Society. Series B (Statistical Methodology)</em> 67 (2): 235–51. <a href="http://www.jstor.org/stable/3647576">http://www.jstor.org/stable/3647576</a>.
</div>
<div id="ref-escobar_94" class="csl-entry">
Escobar, M D. 1994. <span>“<span class="nocase">Estimating normal means with a <span>D</span>irichlet process prior</span>.”</span> <em>Journal of the American Statistical Association</em> 89: 268–77.
</div>
<div id="ref-escobar_west_95" class="csl-entry">
Escobar, M D, and M West. 1995. <span>“<span class="nocase">Bayesian density estimation and inference using mixtures</span>.”</span> <em>Journal of the American Statistical Association</em> 90: 577–88.
</div>
<div id="ref-ferguson_73" class="csl-entry">
Ferguson, T S. 1973. <span>“A <span>B</span>ayesian Analysis of Some Nonparametric Problems.”</span> <em>Annals of Statistics</em> 1: 209–30.
</div>
<div id="ref-ferguson_74" class="csl-entry">
———. 1974. <span>“Prior Distribution on the Spaces of Probability Measures.”</span> <em>Annals of Statistics</em> 2: 615–29.
</div>
<div id="ref-fournier-etal-12" class="csl-entry">
Fournier, David A., Hans J. Skaug, Johnoel Ancheta, James Ianelli, Arni Magnusson, Mark N. Maunder, Anders Nielsen, and John Sibert. 2012. <span>“<span>AD</span> <span>Model</span> <span>Builder</span>: Using Automatic Differentiation for Statistical Inference of Highly Parameterized Complex Nonlinear Models.”</span> <em>Optimization Methods and Software</em> 27 (2): 233–49. <a href="https://doi.org/10.1080/10556788.2011.597854">https://doi.org/10.1080/10556788.2011.597854</a>.
</div>
<div id="ref-gelfand_2002" class="csl-entry">
Gelfand, Alan E, and Athanasios Kottas. 2002. <span>“A Computational Approach for Full Nonparametric Bayesian Inference Under Dirichlet Process Mixture Models.”</span> <em>Journal of Computational and Graphical Statistics</em> 11 (2): 289–305.
</div>
<div id="ref-Gelman_etal_2014" class="csl-entry">
Gelman, A., J. Hwang, and A. Vehtari. 2014. <span>“Understanding Predictive Information Criteria for <span>B</span>ayesian Model.”</span> <em>Statistics and Computing</em> 24 (6): 997–1016.
</div>
<div id="ref-George_Makov_Smith_1993" class="csl-entry">
George, E. I., U. E. Makov, and A. F. M. Smith. 1993. <span>“Conjugate Likelihood Distributions.”</span> <em>Scandinavian Journal of Statistics</em> 20 (2): 147--156.
</div>
<div id="ref-gilbert-varadhan-19" class="csl-entry">
Gilbert, Paul, and Ravi Varadhan. 2019. <em>numDeriv: Accurate Numerical Derivatives</em>. <a href="https://CRAN.R-project.org/package=numDeriv">https://CRAN.R-project.org/package=numDeriv</a>.
</div>
<div id="ref-Green_1995" class="csl-entry">
Green, Peter J. 1995. <span>“Reversible Jump <span>M</span>arkov Chain <span>M</span>onte <span>C</span>arlo Computation and <span>B</span>ayesian Model Determination.”</span> <em>Biometrika</em> 82 (4): 711–32.
</div>
<div id="ref-griewank-walther-08" class="csl-entry">
Griewank, Andreas, and Andrea Walther. 2008. <em>Evaluating <span>Derivatives</span>: <span>Principles</span> and <span>Techniques</span> of <span>Algorithmic</span> <span>Differentiation</span>, <span>Second</span> <span>Edition</span></em>. Second edition. Philadelphia, PA: Society for Industrial; Applied Mathematic.
</div>
<div id="ref-hoffman2014no" class="csl-entry">
Hoffman, Matthew D, and Andrew Gelman. 2014. <span>“The No-u-Turn Sampler: Adaptively Setting Path Lengths in Hamiltonian Monte Carlo.”</span> <em>J. Mach. Learn. Res.</em> 15 (1): 1593–623.
</div>
<div id="ref-Hug_Paciorek_2021" class="csl-entry">
Hug, Joshua E., and Christopher J. Paciorek. 2021. <span>“A Numerically Stable Online Implementation and Exploration of <span>WAIC</span> Through Variations of the Predictive Density, Using <span>NIMBLE</span>.”</span> arXiv preprint. <a href="https://arxiv.org/abs/2106.13359">https://arxiv.org/abs/2106.13359</a>.
</div>
<div id="ref-Ionides_etal_2015" class="csl-entry">
Ionides, Edward L., Dao Nguyen, Yves Atchadé, Stilian Stoev, and Aaron A. King. 2015. <span>“Inference for Dynamic and Latent Variable Models via Iterated, Perturbed <span>Bayes</span> Maps.”</span> <em>Proceedings of the National Academy of Sciences</em> 112 (3): 719–24. <a href="https://doi.org/10.1073/pnas.1410597112">https://doi.org/10.1073/pnas.1410597112</a>.
</div>
<div id="ref-ishwaran_2001" class="csl-entry">
Ishwaran, Hemant, and Lancelot F James. 2001. <span>“Gibbs Sampling Methods for Stick-Breaking Priors.”</span> <em>Journal of the American Statistical Association</em> 96 (453): 161–73.
</div>
<div id="ref-ishwaran_james_2002" class="csl-entry">
Ishwaran, H, and L F James. 2002. <span>“Approximate <span>D</span>irichlet Process Computing in Finite Normal Mixtures: Smoothing and Prior Information.”</span> <em>Journal of Computational and Graphical Statistics</em> 11: 508–32.
</div>
<div id="ref-kristensen-etal-16" class="csl-entry">
Kristensen, Kasper, Anders Nielsen, Casper W. Berg, Hans Skaug, and Bradley M. Bell. 2016. <span>“<span>TMB</span>: Automatic Differentiation and <span>L</span>aplace Approximation.”</span> <em>Journal of Statistical Software</em> 70 (5): 1–21. <a href="https://doi.org/10.18637/jss.v070.i05">https://doi.org/10.18637/jss.v070.i05</a>.
</div>
<div id="ref-Lewandowski_etal_2009" class="csl-entry">
Lewandowski, Daniel, Dorota Kurowicka, and Harry Joe. 2009. <span>“Generating Random Correlation Matrices Based on Vines and Extended Onion Method.”</span> <em>Journal of Multivariate Analysis</em> 100 (9): 1989–2001.
</div>
<div id="ref-lo_84" class="csl-entry">
Lo, A Y. 1984. <span>“On a Class of <span>B</span>ayesian Nonparametric Estimates <span>I</span>: Density Estimates.”</span> <em>The Annals of Statistics</em> 12: 351–57.
</div>
<div id="ref-Louis_1982" class="csl-entry">
Louis, Thomas A. 1982. <span>“Finding the <span>Observed</span> <span>Information</span> <span>Matrix</span> When <span>Using</span> the <span>EM</span> <span>Algorithm</span>.”</span> <em>Journal of the Royal Statistical Society. Series B (Methodological)</em> 44 (2): 226–33. <a href="http://www.jstor.org/stable/2345828">http://www.jstor.org/stable/2345828</a>.
</div>
<div id="ref-Lunn_Spiegelhalter_Thomas_Best_2009" class="csl-entry">
Lunn, David, David Spiegelhalter, Andrew Thomas, and Nicky Best. 2009. <span>“The <span>BUGS</span> Project: Evolution, Critique and Future Directions.”</span> <em>Statistics in Medicine</em> 28 (25): 3049--3067. <a href="https://doi.org/10.1002/sim.3680">https://doi.org/10.1002/sim.3680</a>.
</div>
<div id="ref-Michaud_etal_2021" class="csl-entry">
Michaud, Nicholas, Perry de Valpine, Daniel Turek, Christopher J. Paciorek, and Dao Nguyen. 2021. <span>“Sequential Monte Carlo Methods in the Nimble and nimbleSMC r Packages.”</span> <em>Journal of Statistical Software</em> 100 (3): 1–39. <a href="https://doi.org/10.18637/jss.v100.i03">https://doi.org/10.18637/jss.v100.i03</a>.
</div>
<div id="ref-neal_2000" class="csl-entry">
Neal, R. 2000. <span>“<span class="nocase">Markov chain sampling methods for <span>D</span>irichlet process mixture models</span>.”</span> <em>Journal of Computational and Graphical Statistics</em> 9: 249–65.
</div>
<div id="ref-Neal2003" class="csl-entry">
Neal, Radford M. 2003. <span>“Slice Sampling.”</span> <em>The Annals of Statistics</em> 31 (3): 705–41.
</div>
<div id="ref-neal-11" class="csl-entry">
———. 2011. <span>“<span>MCMC</span> <span>Using</span> <span>Hamiltonian</span> <span>Dynamics</span>.”</span> In <em>Handbook of <span>Markov</span> <span>Chain</span> <span>Monte</span> <span>Carlo</span></em>. Chapman & <span>Hall</span>/<span>CRC</span> <span>Handbooks</span> of <span>Modern</span> <span>Statistical</span> <span>Methods</span>. Chapman; Hall/CRC. <a href="http://www.crcnetbase.com/doi/abs/10.1201/b10905-6">http://www.crcnetbase.com/doi/abs/10.1201/b10905-6</a>.
</div>
<div id="ref-Paciorek_2009" class="csl-entry">
Paciorek, C. J. 2009. <span>“Understanding Intrinsic <span>G</span>aussian <span>M</span>arkov Random Field Spatial Models, Including Intrinsic Conditional Autoregressive Models.”</span> University of California, Berkeley. <a href="http://www.stat.berkeley.edu/~paciorek/research/techVignettes/techVignette5.pdf">http://www.stat.berkeley.edu/~paciorek/research/techVignettes/techVignette5.pdf</a>.
</div>
<div id="ref-Roberts_Sahu_1997" class="csl-entry">
Roberts, G. O., and S. K. Sahu. 1997. <span>“Updating Schemes, Correlation Structure, Blocking and Parameterization for the <span>G</span>ibbs Sampler.”</span> <em>Journal of the Royal Statistical Society: Series B (Statistical Methodology)</em> 59 (2): 291–317. <a href="https://doi.org/10.1111/1467-9868.00070">https://doi.org/10.1111/1467-9868.00070</a>.
</div>
<div id="ref-Rue_Held_2005" class="csl-entry">
Rue, H., and L. Held. 2005. <em>Gaussian <span>M</span>arkov Random Fields: Theory and Applications</em>. Boca Raton: Chapman & Hall.
</div>
<div id="ref-sethuraman_94" class="csl-entry">
Sethuraman, J. 1994. <span>“A Constructive Definition of <span>D</span>irichlet Prior.”</span> <em>Statistica Sinica</em> 2: 639–50.
</div>
<div id="ref-skaug-fournier-06" class="csl-entry">
Skaug, Hans J., and David A. Fournier. 2006. <span>“Automatic Approximation of the Marginal Likelihood in Non-<span>Gaussian</span> Hierarchical Models.”</span> <em>Computational Statistics & Data Analysis</em> 51 (2): 699–709. <a href="https://doi.org/10.1016/j.csda.2006.03.005">https://doi.org/10.1016/j.csda.2006.03.005</a>.
</div>
<div id="ref-Stan_Lang_Fun_2021" class="csl-entry">
Stan Development Team. 2021a. <span>“Stan Language Functions Reference Manual.”</span> 2.27 ed.
</div>
<div id="ref-Stan_Lang_2021" class="csl-entry">
———. 2021b. <span>“Stan Language Reference Manual.”</span> 2.27 ed.
</div>
<div id="ref-stan2023stan" class="csl-entry">
———. 2023. <span>“Stan Modeling Language Users Guide and Reference Manual, Version 2.32.2.”</span> <a href="https://mc-stan.org">https://mc-stan.org</a>.
</div>
<div id="ref-Vehtari_etal_2017" class="csl-entry">
Vehtari, Aki, Andrew Gelman, and Jonah Gabry. 2017. <span>“Practical Bayesian Model Evaluation Using Leave-One-Out Cross-Validation and WAIC.”</span> <em>Statistics and Computing</em> 27 (5): 1413–32.
</div>
<div id="ref-Watanabe_2010" class="csl-entry">
Watanabe, Sumio. 2010. <span>“Asymptotic Equivalence of <span>B</span>ayes Cross Validation and Widely Applicable Information Criterion in Singular Learning Theory.”</span> <em>Journal of Machine Learning Research</em> 11 (Dec): 3571–94.
</div>
</div>
</div>
</section>
</div>
</div>
</div>
<a href="example-maximum-likelihood-estimation-using-optim-with-gradients-from-nimderivs..html" class="navigation navigation-prev navigation-unique" aria-label="Previous page"><i class="fa fa-angle-left"></i></a>
</div>
</div>
<script src="libs/gitbook-2.6.7/js/app.min.js"></script>
<script src="libs/gitbook-2.6.7/js/clipboard.min.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-search.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-sharing.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-fontsettings.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-bookdown.js"></script>
<script src="libs/gitbook-2.6.7/js/jquery.highlight.js"></script>
<script src="libs/gitbook-2.6.7/js/plugin-clipboard.js"></script>
<script>
gitbook.require(["gitbook"], function(gitbook) {
gitbook.start({
"sharing": {
"github": false,
"facebook": true,
"twitter": true,
"linkedin": false,
"weibo": false,
"instapaper": false,
"vk": false,
"whatsapp": false,
"all": ["facebook", "twitter", "linkedin", "weibo", "instapaper"]
},
"fontsettings": {
"theme": "white",
"family": "sans",
"size": 2
},
"edit": {
"link": null,
"text": null
},
"history": {
"link": null,
"text": null
},
"view": {
"link": null,
"text": null
},
"download": ["NimbleUserManual.pdf", "NimbleUserManual.epub"],
"search": {
"engine": "fuse",
"options": null
},
"toc": {
"collapse": "subsection"
},
"toc_depth": 3
});
});
</script>
<!-- dynamically load mathjax for compatibility with self-contained -->
<script>
(function () {
var script = document.createElement("script");
script.type = "text/javascript";
var src = "true";
if (src === "" || src === "true") src = "https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.9/latest.js?config=TeX-MML-AM_CHTML";
if (location.protocol !== "file:")
if (/^https?:/.test(src))
src = src.replace(/^https?:/, '');
script.src = src;
document.getElementsByTagName("head")[0].appendChild(script);
})();
</script>
</body>
</html>