-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMatlab_Codes_Detailed_design_for_Dehydrogenation_Reactors.m
131 lines (121 loc) · 4.26 KB
/
Matlab_Codes_Detailed_design_for_Dehydrogenation_Reactors.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
% Group 1 Design Project
clear all;
close all;
clear;
clc;
% Desired Styrene Production
% 100,000 t/y
Target = 3.17098; %kg/s
% Styrene Equiilibrium const.
K = exp(15.188 - (14761.265/(600+273.15))+0.000264*(600+273.15));
% Components Data
% Molar mass of components, [kg/mole]
MMsty = 0.104152; % Molecular Weight of Styrene
MMhy = 0.002016; % Molecular Weight of Hydrogen
MMeb = 0.106168; % Molecular Weight of Ethylbenzene
MMt = 0.092141; % Molecular Weight of Toluene
MMe = 0.02805; % Molecular Weight of Ethylene
MMm = 0.01604; % Molecular Weight of Methane
MMb = 0.07811; % Molecular Weight of Benzene
MMw = 0.018015; % Molecular Weight of Water
% Catalyst Properties
VoidF = 0.4; % Catalyst bulk porosity (%)
pbulk = 1250; % Catalyst bulk denisty, [kg/m^3]
%Initial parameters
Temp = 663.729+273.15; % Kelvin
Pres = 4; % The Inlet Pressure Bar
R = 1.987; % gas constant = 0.23900574*8.314 cal/molK
RR = 8.31446*10^-5; % (m^3*bar)/(K*mol)
%Design equations specifications
%Reaction rates mol/m3*s
k1 = (1.177*10^8)*exp(-21708/(R*Temp));
k_1= (20.965)*exp(7804/(R*Temp));
k2 = (9.206*10^12)*exp(-45675/(R*Temp));
k3 = (4.724*10^7)*exp(-18857/(R*Temp));
%Reaction rates based on catalyst density.
%k1 = k1/pbulk;
%k_1 = k_1/pbulk;
%k2 = k2/pbulk;
%k3 = k3/pbulk;
% Initial Conditions
MR = 21.6878; % Molar Ratio of steam to Ethylbenzene
V0 = 22; % m^3/s
Stytarget = 0.1;
while Stytarget <= Target
% Blank selec and conv matrices
SelectivityMR = zeros(93,7);
ConversionMR = zeros(93,7);
% Looping on Molar Ratio
for MR = 2:21.6878
FEB0 = (Pres*(V0*(1/(1+MR)))/(RR*Temp));
Steam = MR*FEB0;
% Solving the system of design equations for a PBR
% All calculations done with respect to catalyst weight: dF/dW
Eqsolve = @(L,y)( [(-k1*((y(1)*RR*Temp)/V0) + k_1*((y(2)*RR*Temp)/V0)*((y(3)*RR*Temp)/V0) - k2*((y(1)*RR*Temp)/V0) - k3*((y(1)*RR*Temp)/V0)*((y(3)*RR*Temp)/V0))*2.986; (k1*((y(1)*RR*Temp)/V0)- k_1*((y(2)*RR*Temp)/V0)*((y(3)*RR*Temp)/V0))*2.986; (k1*((y(1)*RR*Temp)/V0)- k_1*((y(2)*RR*Temp)/V0)*((y(3)*RR*Temp)/V0)- k3*((y(1)*RR*Temp)/V0)*((y(3)*RR*Temp)/V0))*2.986]);
[L,y] = ode45(Eqsolve,[0 10000],[FEB0;0;0]);
% Convert, [mol/s]
Feb = y(:,1);
Psty = y(:,2);
Phy = y(:,3);
% Level 2 Mole Balances [mol/s]
Pt = Psty-Phy;
Pb = (FEB0-Feb)- Psty - Pt;
Pm = Pt;
Pe = Pb;
% Outlet Flow
Vout = (V0*(Feb+Pt+Pb+Pm+Pe+Psty+Phy))./FEB0; % m^3/s
% Calculating Selectivity, Conversion and Yield
Conversion = (FEB0-Feb)./FEB0;
% Calculating Recycle
Reb = (FEB0).*(1-Conversion);
Febfed = FEB0-Reb; % What you have to buy
Selectivity = Psty./(FEB0-Feb);
Yield = Selectivity.*Conversion;
Selectivity1 = zeros(69,1);
Conversion1 = zeros(69,1);
for i = 1:69
Selectivity1(i,1) = Selectivity(i,1);
Conversion1(i,1) = Conversion(i,1);
end
SelectivityM(:,MR-1) = Selectivity1;
ConversionM(:,MR-1) = Conversion1;
end
% Calculating Mass flowrates, [kg/s]
MReb = Reb * MMeb;
MPb = Pb * MMb;
MPm = Pm * MMm;
MPe = Pe * MMe;
MPt = Pt * MMt;
MPhy = Phy * MMhy;
MPsty = Psty * MMsty;
MFeb = Feb * MMeb;
MFebfed = Febfed * MMeb;
MSteam = Steam * MMw;
MFEB0 = FEB0 * MMeb;
% Checking to see if all adds up, mass
Min = MFeb(1)+ MSteam;
Mout = MPb(length(MPb))+MPm(length(MPb)) + MPe(length(MPb)) + MPt(length(MPb)) + MPhy(length(MPb)) + MPsty(length(MPb)) + MReb(length(MPb));
Mout = Mout + MSteam;
Stytarget = MPsty(end);
V0 = V0 + 0.01;
end
% F vs L
figure(1)
plot(L,Feb,L,Psty,L,Phy,L,Pm,L,Pt,L,Pe,L,Pb,'LineWidth',1.3);
xlabel('Catalyst Weight, [kg]','FontSize',14,'FontName','Times New Roman'),
ylabel('Molar Flowrate, [mol/s]','FontSize',14,'FontName','Times New Roman');
legend('Ethylbenzene','Styrene','Hydrogen','Methane','Toluene','Ethylene','Benzene');
axis([0 100 0 50]);
% F vs Conv
figure(2)
plot(Conversion,Feb,Conversion,Psty,'+',Conversion,Phy,Conversion,Pm,Conversion,Pt,Conversion,Pe,Conversion,Pb);
xlabel('Conversion','FontSize',12,'FontName','Times New Roman'),
ylabel('F, [mol/s]','FontSize',12,'FontName','Times New Roman');
legend('Feb','Fsty','Fh','Pm','Pt','Pe','Pb');
% Plotting selectivity vs conv
figure(3)
plot(Conversion,Selectivity);
xlabel('Conversion','FontSize',12,'FontName','Times New Roman'),
ylabel('Selectivity','FontSize',12,'FontName','Times New Roman');
axis([0 1 0.7 1]);
title('PBR at T = 600 C');