-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathtorch_utils.py
458 lines (358 loc) · 14 KB
/
torch_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
import numpy as np
import torch, os
import torch.nn.utils.rnn as rnn_utils
from typing import Tuple
import torch.nn as nn
import torch.nn.functional as F
from PIL import Image
import torchvision
from torchvision import transforms
def flatten(x):
'''
flatten high dimensional tensor x into an array
:param x: shape (B, D1, D2, ...)
:return: 1 dimensional tensor
'''
dims = x.size()[1:] #remove the first dimension as it is batch dimension
num_features = 1
for s in dims: num_features *= s
return x.contiguous().view(-1, num_features)
def gpu(tensor, gpu=False):
if gpu: return tensor.cuda()
else: return tensor
def cpu(tensor):
if tensor.is_cuda: return tensor.cpu()
else: return tensor
def minibatch(*tensors, **kwargs):
batch_size = kwargs['batch_size']
if len(tensors) == 1:
tensor = tensors[0]
for i in range(0, len(tensor), batch_size):
yield tensor[i:i + batch_size]
else:
for i in range(0, len(tensors[0]), batch_size):
yield tuple(x[i:i + batch_size] for x in tensors)
def shuffle(*arrays, **kwargs):
"""This is not an inplace operation. Therefore, you can shuffle without worrying changing data."""
if len(set(len(x) for x in arrays)) != 1:
raise ValueError('All inputs to shuffle must have '
'the same length.')
shuffle_indices = np.arange(len(arrays[0]))
np.random.shuffle(shuffle_indices) # fix this for reproducible
if len(arrays) == 1:
return arrays[0][shuffle_indices]
else:
return tuple(x[shuffle_indices] for x in arrays)
def assert_no_grad(variable):
if variable.requires_grad:
raise ValueError(
"nn criterions don't compute the gradient w.r.t. targets - please "
"mark these variables as volatile or not requiring gradients"
)
def numpy2tensor(x, dtype):
# torch.tensor(torch.from_numpy(var), dtype = torch.int, torch.long)
return torch.tensor(torch.from_numpy(x), dtype = dtype)
def tensor2numpy(x):
# return x.numpy()
return cpu(x).numpy()
def set_seed(seed, cuda=False):
torch.manual_seed(seed)
if cuda: torch.cuda.manual_seed(seed)
def create_mask_tensor(query: torch.Tensor, doc: torch.Tensor, threshold: int = 0):
"""
Creating masking of two tensor. These two tensors are integer tensor
Parameters
----------
query: (B, L)
doc: (B, R)
threshold: when it is 0, means we ignore padding tokens. when it is 1, it means we ignore <unk> or oov words
Returns
-------
"""
assert query.size(0) == doc.size(0)
assert len(query.size()) == 2 and len(doc.size()) == 2
query_mask = query > threshold
doc_mask = doc > threshold
query_mask = query_mask.unsqueeze(2) # (B, L, 1)
doc_mask = doc_mask.unsqueeze(2) # (B, R, 1)
doc_mask = doc_mask.permute(0, 2, 1) # (B, 1, R)
mask_tensor = torch.bmm(query_mask.float(), doc_mask.float()) # (B, L, R)
return mask_tensor # , torch.sum(query_mask, dim = 1).squeeze(), torch.sum(doc_mask, dim = 1).squeeze()
def create_mask_tensor_image(left_indices: torch.Tensor, right_indices: torch.Tensor, threshold: int = 0):
"""
Creating masking of two tensor. These two tensors are integer tensor
Parameters
----------
left_indices: (B1, n1, M1)
right_indices: (B, n, M2)
threshold: when it is 0, means we ignore padding tokens. when it is 1, it means we ignore <unk> or oov words
Returns
-------
"""
B1, n1, M1 = left_indices.size()
B, n, M2 = right_indices.size()
assert n1 == 1
left_mask = left_indices > 0
right_mask = right_indices > 0
left_mask = left_mask.view(B1, M1, 1)
if B1 == 1: left_mask = left_mask.expand(B, M1, 1) # during testing
right_mask = right_mask.view(B, n * M2, 1)
ans = torch.bmm(left_mask.float(), right_mask.permute(0, 2, 1).float())
ans = ans.view(B, M1, n, M2).permute(0, 2, 1, 3) # (B, n, M1, M2)
return ans
def count_parameters(model: nn.Module):
return sum(p.numel() for p in model.parameters() if p.requires_grad)
def get_sorted_index_and_reverse_index(base_array: np.ndarray):
"""
We use sorted_index = np.argsort(-base_array) to find the indices to short the array decreasingly.
We also need to find the indices to restoring the original order of elements of base_array
after apply sorted_index.
This method is important because we need to input the tensor to GRU/LSTM with packed sequence.
Parameters
----------
base_array: (B, )
Returns
-------
"""
assert type(base_array) == np.ndarray
batch_size = base_array.shape[0]
assert base_array.shape == (batch_size,)
new_indices = np.argsort(-base_array)
old_indices = np.arange(batch_size)
r = np.stack([new_indices, old_indices], axis = 1)
r = r[np.argsort(r[:, 0])]
restoring_indices = r[:, 1] # the retoring indices. This method is tested very carefully.
return new_indices, restoring_indices
def packing_sequence(seq: torch.Tensor, seq_lens: np.ndarray, new_index) -> torch.Tensor:
"""
Prepare a packed sequence to input to an RNN. It is required that the length of sequences in `seq` must be sorted.
After
Parameters
----------
seq: (B, L, D) where L is length of sequence
seq_lens: (B, )
new_index: (B, ) this index is used to make sequence lengths sorted
old_index: (B, ) this index is used to restore the sequence lengths
Returns
-------
"""
return rnn_utils.pack_padded_sequence(seq[new_index], seq_lens[new_index], batch_first = True)
def torch_repeat_dim0(A: torch.tensor, n: int):
"""
Repeat tensor across a dimension
Parameters
----------
A
axis
Returns
-------
"""
assert len(A.size()) == 3
d1, d2, d3 = A.size()
A = A.unsqueeze(0).transpose(0, 1).repeat(1, n, 1, 1).view(-1, d2, d3)
assert A.size() == (n * d1, d2, d3)
return A
def boolean_mask(target: torch.Tensor, mask: torch.Tensor):
"""
Mimick tf.boolean_mask
Copied from https://discuss.pytorch.org/t/slicing-tensor-using-boolean-list/7354/3
Parameters
----------
target
mask
Returns
-------
"""
x = mask == True
# y=torch.arange(0,3)
# x=torch.Tensor([True,False,True])==True
# print(y[x])
return target[x]
def torch_argsort(input, dim=None, descending=False):
"""Returns the indices that sort a tensor along a given dimension in ascending
order by value.
This is the second value returned by :meth:`torch.sort`. See its documentation
for the exact semantics of this method.
Args:
input (Tensor): the input tensor
dim (int, optional): the dimension to sort along
descending (bool, optional): controls the sorting order (ascending or descending)
Example::
>>> a = torch.randn(4, 4)
>>> a
tensor([[ 0.0785, 1.5267, -0.8521, 0.4065],
[ 0.1598, 0.0788, -0.0745, -1.2700],
[ 1.2208, 1.0722, -0.7064, 1.2564],
[ 0.0669, -0.2318, -0.8229, -0.9280]])
>>> torch.argsort(a, dim=1)
tensor([[2, 0, 3, 1],
[3, 2, 1, 0],
[2, 1, 0, 3],
[3, 2, 1, 0]])
"""
# copy from /~https://github.com/pytorch/pytorch/pull/9600/files
if dim is None:
return torch.sort(input, -1, descending)[1]
return torch.sort(input, dim, descending)[1]
def _predict_process_ids(user_ids, item_ids, num_items, use_cuda):
"""
Parameters
----------
user_ids
item_ids
num_items
use_cuda
Returns
-------
"""
if item_ids is None:
item_ids = np.arange(num_items, dtype=np.int64)
if np.isscalar(user_ids):
user_ids = np.array(user_ids, dtype=np.int64)
user_ids = torch.from_numpy(user_ids.reshape(-1, 1).astype(np.int64))
item_ids = torch.from_numpy(item_ids.reshape(-1, 1).astype(np.int64))
if item_ids.size()[0] != user_ids.size(0):
user_ids = user_ids.expand(item_ids.size())
user_var = gpu(user_ids, use_cuda)
item_var = gpu(item_ids, use_cuda)
return user_var.squeeze(), item_var.squeeze()
def idf(total_docs: int, term_freq: int) -> float:
"""compute inverse doc frequency. If a term appears at all docs, then, its value is low for discrimination.
If a term does not show in any doc, then, we simply use set denominator to 1 => largest idf value """
assert term_freq <= total_docs, "The number of documents that contain a term must be smaller than total_docs"
return np.log((1.0 + total_docs) / float(term_freq + 1.0)) + 1.0
def moving_average(input_tensor: torch.Tensor, window_size: int, dimension: int):
"""
Parameters
----------
input_tensor: torch.Tensor of shape (B, L, D)
window_size: sliding windows size
dimension: dimension we want to apply sliding window
Returns
-------
"""
ret = torch.cumsum(input_tensor, dim = dimension)
# print("Here:", ret, ret.shape)
ret[:, window_size:] = ret[:, window_size:] - ret[:, :-window_size]
return ret[:, window_size - 1:] / window_size
def cosine_distance(a: torch.Tensor, b: torch.Tensor):
"""
Compute the cosine distance between two tensors. This implementation saves a lot of memory since
memory complexity is O(B x L x R)
Parameters
----------
a: `torch.Tensor` shape (B, L, D)
b: `torch.Tensor` shape (B, R, D)
Returns
-------
"""
assert len(a.size()) == len(b.size()) == 3
A_square = (a * a).sum(dim = - 1) # B, L
B_square = (b * b).sum(dim = -1) # B, R
dot = torch.bmm(a, b.permute(0, 2, 1)) # B, L, R
# added abs in case of negative, added 1e-10 to avoid nan gradient of sqrt
return torch.sqrt(torch.abs(A_square.unsqueeze(-1) - 2 * dot + B_square.unsqueeze(1)) + 1e-10)
def l1_distance(a: torch.Tensor, b: torch.Tensor):
"""
Compute the l1 distance between two tensors. This implementation consumes a lot of memory since
mem complexity is O(B x L x R x D) due to x - y. I tried many ways but this is the best thing I can do
Parameters
----------
a: `torch.Tensor` shape (B, L, D)
b: `torch.Tensor` shape (B, R, D)
Returns
-------
"""
assert len(a.size()) == len(b.size()) == 3
x = a.unsqueeze(2) # (B, L, 1, D)
y = b.unsqueeze(1) # (B, 1, R, D)
return torch.norm(x - y, p = 1, dim = -1)
def _get_doc_context_copacrr(doc: torch.Tensor, doc_mask: torch.Tensor, context_window_size: int) -> torch.Tensor:
"""
Parameters
----------
doc: with shape (B, R, D)
doc_mask: binary tensor that differentiate real tokens from padding tokens (B, R)
Returns
-------
a tensor of shape (B, R, D) which indicates the context representation of each token in doc.
We also reset padding tokens to zero since they have no context
"""
def moving_average(a: torch.Tensor, window_size: int, dimension: int):
ret = torch.cumsum(a, dim = dimension)
# print("Here:", ret, ret.shape)
ret[:, window_size:] = ret[:, window_size:] - ret[:, :-window_size]
return ret[:, window_size - 1:] / window_size
left = context_window_size // 2
right = context_window_size - left - 1 # in case context windows is an even number then left=x//2, right=x-x//2
y = F.pad(doc, (0, 0, left, right)) # (B, c/2 + R + c/2, D)
document_context = moving_average(y, window_size = context_window_size, dimension = 1)
document_context = document_context * doc_mask.unsqueeze(-1).float()
return document_context
def init_weights(m):
"""
Copied from https://discuss.pytorch.org/t/how-are-layer-weights-and-biases-initialized-by-default/13073/3
Examples:
>>> w = nn.Linear(3, 4)
>>> w.apply(init_weights)
"""
if type(m) == nn.Linear:
nn.init.xavier_uniform_(m.weight)
if hasattr(m.bias, "data"): m.bias.data.fill_(0)
if isinstance(m, nn.Conv2d):
torch.nn.init.xavier_uniform_(m.weight)
if m.bias:
torch.nn.init.xavier_uniform_(m.bias)
def auto_rnn(rnn_cell: nn.RNN, input_feats: torch.Tensor,
lens: torch.Tensor, new_indices: torch.Tensor, restoring_indices: torch.Tensor, max_len: int):
"""
Parameters
----------
rnn_cell : a rnn cell
input_feats: `torch.Tensor` (B, L, D)
lens: `torch.Tensor` (B, )
new_indices: `torch.Tensor` (B, )
restoring_indices: `torch.Tensor` (B, )
max_len: int
Returns
-------
"""
return rnn_cell((input_feats, lens, new_indices, restoring_indices), max_len=max_len, return_h=False)[0]
def rnn_last_h(rnn_cell: nn.RNN, input_feats: torch.Tensor,
lens: torch.Tensor, new_indices: torch.Tensor, restoring_indices: torch.Tensor, max_len: int):
"""
return the last hidden vectors of an RNN
Parameters
----------
rnn_cell : a rnn cell
input_feats: `torch.Tensor` (B, L, D)
lens: `torch.Tensor` (B, )
new_indices: `torch.Tensor` (B, )
restoring_indices: `torch.Tensor` (B, )
max_len: int
Returns
-------
"""
return rnn_cell((input_feats, lens, new_indices, restoring_indices), max_len=max_len, return_h=True)[1]
def retrieve_elements_from_indices(tensor: torch.Tensor, indices: torch.Tensor):
"""
Copied from https://discuss.pytorch.org/t/pooling-using-idices-from-another-max-pooling/37209/4
How does this work? (Checked
Parameters
----------
tensor: torch.Tensor shape B, C, L, R
indices: torch.Tensor shape (B, C, L, R) the values are indices where the last two dimensions are flattened
Returns
-------
"""
flattened_tensor = tensor.flatten(start_dim=2)
output = flattened_tensor.gather(dim=2, index=indices.flatten(start_dim=2)).view_as(indices)
return output
data_transforms = transforms.Compose([
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
def load_images(infile):
im = Image.open(infile).convert('RGB')
return data_transforms(im)