-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathntm.py
97 lines (77 loc) · 3.31 KB
/
ntm.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
import torch
from torch import nn
import torch.nn.functional as F
from modules import Memory, Head, Controller
class NTM(nn.Module):
def __init__(self,
input_dim,
output_dim,
ctrl_dim,
memory_units,
memory_unit_size,
num_heads):
super(NTM, self).__init__()
# Create controller
self.ctrl_dim = ctrl_dim
self.controller = Controller(input_dim + num_heads * memory_unit_size,
ctrl_dim,
output_dim,
ctrl_dim + num_heads * memory_unit_size)
# Create memory
self.memory = Memory(memory_units, memory_unit_size)
self.memory_unit_size = memory_unit_size # M
self.memory_units = memory_units # N
# Create Heads
self.num_heads = num_heads
self.heads = nn.ModuleList([])
for head in range(num_heads):
self.heads += [
Head('r', ctrl_dim, memory_unit_size),
Head('w', ctrl_dim, memory_unit_size)
]
# Init previous head weights and read vectors
self.prev_head_weights = []
self.prev_reads = []
# Layers to initialize the weights and read vectors
self.head_weights_fc = nn.Linear(1, self.memory_units)
self.reads_fc = nn.Linear(1, self.memory_unit_size)
self.reset()
def forward(self, x):
'''Returns the output of the Neural Turing Machine'''
# Get controller states
ctrl_hidden, ctrl_cell = self.controller(x, self.prev_reads)
# Read, and Write
reads = []
head_weights = []
for head, prev_head_weights in zip(self.heads, self.prev_head_weights):
# Read
if head.mode == 'r':
weights, read_vec = head(ctrl_cell, prev_head_weights, self.memory)
reads.append(read_vec)
# Write
elif head.mode == 'w':
weights, _ = head(ctrl_cell, prev_head_weights, self.memory)
head_weights.append(weights)
# Compute output
output = self.controller.output(reads)
self.prev_head_weights = head_weights
self.prev_reads = reads
return output
def reset(self, batch_size=1):
'''Reset/initialize NTM parameters'''
# Reset memory and controller
self.memory.reset(batch_size)
self.controller.reset(batch_size)
# Initialize previous head weights (attention vectors)
self.prev_head_weights = []
for i in range(len(self.heads)):
# prev_weight = torch.zeros([batch_size, self.memory.n])
prev_weight = F.softmax(self.head_weights_fc(torch.Tensor([[0.]])), dim=1)
self.prev_head_weights.append(prev_weight)
# Initialize previous read vectors
self.prev_reads = []
for i in range(self.num_heads):
# prev_read = torch.zeros([batch_size, self.memory.m])
# nn.init.kaiming_uniform_(prev_read)
prev_read = self.reads_fc(torch.Tensor([[0.]]))
self.prev_reads.append(prev_read)