-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmemTD3.py
323 lines (262 loc) · 14 KB
/
memTD3.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
import copy
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
"""
Implementation of ALH (ALH + TD3)
"""
class MemFFW(nn.Module):
def __init__(self, observation_dim: int, action_dim: int, ae_noise: float = 0.2, hidden_dim: int = 64,
hypo_dim: int = 64, eps: float = 0.03, **kwargs, ):
super(MemFFW, self).__init__()
self.ae_noise = ae_noise
self.state_dim = hypo_dim
self.eps = eps
self.encoder = nn.Sequential(nn.Linear(observation_dim + action_dim + 1, hidden_dim), nn.Sigmoid(),
nn.Linear(hidden_dim, hidden_dim), nn.Sigmoid(), nn.Linear(hidden_dim, hypo_dim), )
self.decoder = nn.Sequential(nn.Linear(observation_dim + action_dim + 1 + hypo_dim, hidden_dim), nn.Sigmoid(),
nn.Linear(hidden_dim, hidden_dim), nn.Sigmoid(),
nn.Linear(hidden_dim, observation_dim + action_dim + 1), )
def _mk_input(self, observation, action, reward):
x = torch.cat((observation, action, reward.reshape(-1, 1)), dim=-1)
return x
def encode(self, observation, action, reward, prev_vec=None):
x = self._mk_input(observation, action, reward)
encoded = F.normalize(self.encoder(x), eps=self.eps, dim=-1)
encoded = encoded.mean(dim=-2, keepdim=False).reshape(-1)
if prev_vec is not None:
prev_vec = prev_vec.detach().reshape(-1)
encoded = F.normalize(encoded + prev_vec, eps=self.eps, dim=-1)
return encoded
def sample_encode(self, observation, action, reward, mini_batch_size: int, prev_vec=None):
bsz = observation.size(0)
if mini_batch_size is None:
mini_batch_size = bsz // 2
x = self._mk_input(observation, action, reward)
indices = torch.randint(0, bsz, size=(bsz, mini_batch_size), device=x.device)
mini_batch_indices = (indices - torch.min(indices, dim=-1)[0][..., None] + torch.arange(bsz, device=x.device)[
..., None]) % bsz
mini_batches = x[mini_batch_indices]
encoded = F.normalize(self.encoder(mini_batches), eps=self.eps, dim=-1)
encoded = encoded.mean(dim=-2, keepdim=False).reshape(bsz, self.state_dim)
if prev_vec is not None:
assert (prev_vec.shape == (bsz, self.state_dim) or prev_vec.shape == (
self.state_dim,)), f"prev_vec shape not match!: {prev_vec.shape}"
encoded = F.normalize(encoded + prev_vec, eps=self.eps, dim=-1)
return encoded
def decode(self, observation, action, reward, prev_vec):
observations = self._mk_input(observation, action, reward)
bsz = observation.size(0)
if prev_vec.shape != (bsz, self.state_dim):
prev_vec = prev_vec.reshape(1, -1).expand(bsz, -1)
original_x = observations
noise_range = original_x.max(dim=0).values - original_x.min(dim=0).values
noise = torch.randn_like(original_x) * noise_range * self.ae_noise
x = original_x + noise
x = torch.cat((x, prev_vec), dim=-1)
denoised_x = self.decoder(x)
return denoised_x, F.mse_loss(original_x, denoised_x)
class Actor(nn.Module):
def __init__(self, state_dim, action_dim, max_action, hidden_dim: int = 64, hypo_dim: int = 64, ):
super(Actor, self).__init__()
self.hypo_dim = hypo_dim
self.l1 = nn.Linear(state_dim + hypo_dim, hidden_dim)
self.l2 = nn.Linear(hidden_dim, hidden_dim)
self.l3 = nn.Linear(hidden_dim, action_dim)
self.max_action = max_action
def forward(self, state, prev_vec):
bsz = state.shape[0]
if prev_vec.shape != (bsz, self.hypo_dim):
prev_vec = prev_vec.reshape(1, -1).expand(bsz, -1)
to_cat = [state, prev_vec]
state = torch.cat(to_cat, 1)
a = F.relu(self.l1(state))
a = F.relu(self.l2(a))
return self.max_action * torch.tanh(self.l3(a))
class Critic(nn.Module):
def __init__(self, state_dim, action_dim, hidden_dim: int = 64, hypo_dim: int = 64, ):
super(Critic, self).__init__()
self.hypo_dim = hypo_dim
# Q1 architecture
self.l1 = nn.Linear(state_dim + action_dim + hypo_dim, hidden_dim)
self.l2 = nn.Linear(hidden_dim, hidden_dim)
self.l3 = nn.Linear(hidden_dim, 1)
# Q2 architecture
self.l4 = nn.Linear(state_dim + action_dim + hypo_dim, hidden_dim)
self.l5 = nn.Linear(hidden_dim, hidden_dim)
self.l6 = nn.Linear(hidden_dim, 1)
def forward(self, state, action, prev_vec):
bsz = state.shape[0]
if prev_vec.shape != (bsz, self.hypo_dim):
prev_vec = prev_vec.reshape(1, -1).expand(bsz, -1)
to_cat = [state, action, prev_vec]
sa = torch.cat(to_cat, 1)
q1 = F.relu(self.l1(sa))
q1 = F.relu(self.l2(q1))
q1 = self.l3(q1)
q2 = F.relu(self.l4(sa))
q2 = F.relu(self.l5(q2))
q2 = self.l6(q2)
return q1, q2
def Q1(self, state, action, prev_vec):
bsz = state.shape[0]
if prev_vec.shape != (bsz, self.hypo_dim):
prev_vec = prev_vec.reshape(1, -1).expand(bsz, -1)
to_cat = [state, action, prev_vec]
sa = torch.cat(to_cat, 1)
q1 = F.relu(self.l1(sa))
q1 = F.relu(self.l2(q1))
q1 = self.l3(q1)
return q1
class memTD3(object):
def __init__(self, state_dim, action_dim, max_action, discount=0.99, tau=0.005, policy_noise=0.2, noise_clip=0.5,
policy_freq=2, device: str = 'cpu', hidden_dim: int = 64, hypo_dim: int = 64, mini_batch_size=None,
**kwargs):
self.device = device
self.mini_batch_size = mini_batch_size
self.state_dim = state_dim
self.action_dim = action_dim
# M and \phi network
self.mem = MemFFW(state_dim, action_dim, hidden_dim=hidden_dim, hypo_dim=hypo_dim).to(device)
self.mem_optimizer = torch.optim.Adam(self.mem.parameters(), lr=3e-4)
# hypothesis-augmented actor/critic
self.actor = Actor(state_dim, action_dim, max_action, hidden_dim=hidden_dim, hypo_dim=hypo_dim).to(device)
self.actor_target = copy.deepcopy(self.actor)
self.actor_optimizer = torch.optim.Adam(self.actor.parameters(), lr=3e-4)
self.critic = Critic(state_dim, action_dim, hidden_dim=hidden_dim, hypo_dim=hypo_dim).to(device)
self.critic_target = copy.deepcopy(self.critic)
self.critic_optimizer = torch.optim.Adam(self.critic.parameters(), lr=3e-4)
# h_0
self.initial_state = torch.nn.Parameter(torch.zeros((hypo_dim,), dtype=torch.float32, device=device))
self.initial_state_optimizer = torch.optim.Adam([self.initial_state], lr=3e-4)
# other hyper params
self.max_action = max_action
self.discount = discount
self.tau = tau
self.policy_noise = policy_noise
self.noise_clip = noise_clip
self.policy_freq = policy_freq
self.total_it = 0
self._test_state = None
def train_mem_step(self, observation, action, reward) -> dict:
""" Optimize weak model"""
o_1_size = np.random.randint(1, observation.shape[0] - 1)
metrics = {}
batch = {'observation': observation, 'action': action, 'reward': reward, }
o_1 = {'observation': batch['observation'][:o_1_size], 'action': batch['action'][:o_1_size],
'reward': batch['reward'][:o_1_size], }
h_1 = self.mem.encode(**o_1, prev_vec=None)
_, loss_h_1 = self.mem.decode(**o_1, prev_vec=h_1)
o_2 = {'observation': batch['observation'][o_1_size:], 'action': batch['action'][o_1_size:],
'reward': batch['reward'][o_1_size:], }
h = self.mem.encode(**o_2, prev_vec=h_1)
_, loss_h = self.mem.decode(**batch, prev_vec=h)
diversity_loss = (-F.mse_loss(h_1, self.initial_state.detach()) - F.mse_loss(h, self.initial_state.detach()))
loss = (loss_h_1 + loss_h) + diversity_loss
metrics.update(
{'internal_mem_loss': loss, 'loss_h_1': loss_h_1, 'loss_h': loss_h, 'diversity_loss': diversity_loss})
# optimize D (\phi) and M (incremental fashion)
self.mem_optimizer.zero_grad()
loss.backward()
self.mem_optimizer.step()
# optimize h_0
_, D_train_mem_loss = self.mem.decode(**batch, prev_vec=self.initial_state)
self.initial_state_optimizer.zero_grad()
D_train_mem_loss.backward()
self.initial_state_optimizer.step()
metrics.update({'D_train_mem_loss': D_train_mem_loss, })
return metrics
def forget(self):
self._test_state = None
@property
def prev_state(self):
if self._test_state is None:
# initialize h'_0 as h_0
self._test_state = self.initial_state.detach()
return self._test_state
@prev_state.setter
def prev_state(self, value):
self._test_state = value
def watch(self, observation, action, reward) -> dict:
if not isinstance(observation, torch.Tensor):
observation = torch.tensor(observation, device=self.device, dtype=torch.float32)
observation = observation.reshape(-1, self.state_dim)
if not isinstance(action, torch.Tensor):
action = torch.tensor(action, device=self.device, dtype=torch.float32)
action = action.reshape(-1, self.action_dim)
if not isinstance(reward, torch.Tensor):
reward = torch.tensor(reward, device=self.device, dtype=torch.float32)
reward = reward.reshape(-1)
with torch.no_grad():
# update h'_0 with o_test
self.prev_state = self.mem.encode(observation, action, reward, self.prev_state)
return {}
def select_action(self, observation, return_batch=False):
if not isinstance(observation, torch.Tensor):
observation = torch.tensor(observation, device=self.device, dtype=torch.float32)
observation = observation.reshape(-1, self.state_dim)
out = self.actor(observation, getattr(self, 'prev_state', None)).cpu().data.numpy()
if return_batch:
return out
return out.flatten()
def train(self, replay_buffer, batch_size=256):
self.total_it += 1
# Sample replay buffer
state, action, next_state, reward, not_done = replay_buffer.sample(batch_size)
if self.total_it % 10 == 0:
self.train_mem_step(state, action, reward)
with torch.no_grad():
mini_batch_size = self.mini_batch_size if self.mini_batch_size is not None else batch_size // 2
hypothesis = self.mem.sample_encode(state, action, reward, mini_batch_size=mini_batch_size,
prev_vec=None)
with torch.no_grad():
# Select action according to policy and add clipped noise
noise = (torch.randn_like(action) * self.policy_noise).clamp(-self.noise_clip, self.noise_clip)
next_action = (self.actor_target(next_state, prev_vec=hypothesis) + noise).clamp(-self.max_action,
self.max_action)
# Compute the target Q value
target_Q1, target_Q2 = self.critic_target(next_state, next_action, prev_vec=hypothesis)
target_Q = torch.min(target_Q1, target_Q2)
target_Q = reward + not_done * self.discount * target_Q
# Get current Q estimates
current_Q1, current_Q2 = self.critic(state, action, prev_vec=hypothesis)
# Compute critic loss
critic_loss = F.mse_loss(current_Q1, target_Q) + F.mse_loss(current_Q2, target_Q)
# Optimize the critic
self.critic_optimizer.zero_grad()
critic_loss.backward()
self.critic_optimizer.step()
# Delayed policy updates
if self.total_it % self.policy_freq == 0:
# Compute actor loss
actor_loss = -self.critic.Q1(state, self.actor(state, prev_vec=hypothesis), prev_vec=hypothesis).mean()
# Optimize the actor
self.actor_optimizer.zero_grad()
actor_loss.backward()
self.actor_optimizer.step()
# Update the frozen target models
for param, target_param in zip(self.critic.parameters(), self.critic_target.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
for param, target_param in zip(self.actor.parameters(), self.actor_target.parameters()):
target_param.data.copy_(self.tau * param.data + (1 - self.tau) * target_param.data)
def save(self, filename):
torch.save(self.critic.state_dict(), filename + "_critic")
torch.save(self.critic_optimizer.state_dict(), filename + "_critic_optimizer")
torch.save(self.actor.state_dict(), filename + "_actor")
torch.save(self.actor_optimizer.state_dict(), filename + "_actor_optimizer")
torch.save(self.mem.state_dict(), filename + "_mem")
torch.save(self.mem_optimizer.state_dict(), filename + "_mem_optimizer")
torch.save(self.initial_state, filename + "_initial_state")
torch.save(self.initial_state_optimizer.state_dict(), filename + "_initial_state_optimizer")
def load(self, filename):
self.critic.load_state_dict(torch.load(filename + "_critic"))
self.critic_optimizer.load_state_dict(torch.load(filename + "_critic_optimizer"))
self.critic_target = copy.deepcopy(self.critic)
self.actor.load_state_dict(torch.load(filename + "_actor"))
self.actor_optimizer.load_state_dict(torch.load(filename + "_actor_optimizer"))
self.actor_target = copy.deepcopy(self.actor)
self.mem.load_state_dict(torch.load(filename + "_mem"))
self.mem_optimizer.load_state_dict(torch.load(filename + "_mem_optimizer"))
self.initial_state = torch.load(filename + "_initial_state").to(self.device)
self.initial_state_optimizer.load_state_dict(torch.load(filename + "_initial_state_optimizer"))