-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
190 lines (159 loc) · 6.96 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
import numpy as np
import torch
import gym
import argparse
import os
import tqdm.auto
import utils
import TD3
import DDPG
import memTD3
import memDDPG
import toy_env
"""
We keep the base the implementation of /~https://github.com/sfujim/TD3 [TD3 paper] (action noise parameter, evaluation),
add adaptive rollout in evaluation and ALH-a
"""
def eval_policy(policy, env_name, seed, eval_episodes=10):
eval_env = gym.make(env_name)
eval_env.seed(seed + 100)
options = {}
if env_name == 'MultiNormEnv':
options['is_hard'] = False
avg_reward = 0.
if hasattr(policy, 'forget'):
policy.forget()
for _ in range(eval_episodes):
state, done = eval_env.reset(options=options), False
while not done:
action = policy.select_action(np.array(state))
p_state = np.array(state)
state, reward, done, _ = eval_env.step(action)
avg_reward += reward
if hasattr(policy, 'watch'):
# adaptive rollout
policy.watch(p_state, action, reward)
avg_reward /= eval_episodes
return avg_reward
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--policy", required=True)
parser.add_argument("--env", required=True)
parser.add_argument("--hidden_dim", default=256, type=int)
parser.add_argument("--hypo_dim", default=64, type=int)
parser.add_argument("--seed", default=0, type=int)
parser.add_argument("--start_timesteps", default=25e3, type=int)
parser.add_argument("--eval_freq", default=5e3, type=int)
parser.add_argument("--max_timesteps", default=1e6, type=int)
parser.add_argument("--expl_noise", default=0.1, type=float)
parser.add_argument("--batch_size", default=256, type=int)
parser.add_argument("--mini_batch_size", default=None, type=int)
parser.add_argument("--discount", default=0.99, type=float)
parser.add_argument("--tau", default=0.005, type=float)
parser.add_argument("--policy_noise", default=0.2)
parser.add_argument("--noise_clip", default=0.5)
parser.add_argument("--policy_freq", default=2, type=int)
parser.add_argument("--save_model", action="store_true")
parser.add_argument("--load_model", default="")
parser.add_argument("-is_not_hard", action="store_true")
parser.add_argument("--device", default=None, type=str)
args = parser.parse_args()
device = args.device
start_timesteps = args.start_timesteps
if device is None:
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
file_name = f"{args.policy}_{args.env}_{args.seed}"
if args.is_not_hard:
file_name = f"{args.policy}_not_hard_{args.env}_{args.seed}"
print("---------------------------------------")
print(f"Policy: {args.policy}, Env: {args.env}, Seed: {args.seed}")
print("---------------------------------------")
if not os.path.exists("../results/"):
os.makedirs("../results/")
if args.save_model and not os.path.exists("../models"):
os.makedirs("../models")
torch.manual_seed(args.seed)
np.random.seed(args.seed)
env = gym.make(args.env)
options = {}
if args.env == 'MultiNormEnv':
options['is_hard'] = not args.is_not_hard
# Set seeds
env.seed(args.seed)
env.action_space.seed(args.seed)
state_dim = env.observation_space.shape[0]
action_dim = env.action_space.shape[0]
max_action = float(env.action_space.high[0])
kwargs = {"state_dim": state_dim, "action_dim": action_dim, "max_action": max_action, "discount": args.discount,
"tau": args.tau, "device": device, "hidden_dim": args.hidden_dim, "hypo_dim": args.hypo_dim}
# Initialize policy
if args.policy == "TD3":
kwargs["policy_noise"] = args.policy_noise * max_action
kwargs["noise_clip"] = args.noise_clip * max_action
kwargs["policy_freq"] = args.policy_freq
policy = TD3.TD3(**kwargs)
elif args.policy == "DDPG":
policy = DDPG.DDPG(**kwargs)
elif "memTD3" in args.policy:
# if is either ALH-g/ALH-a
kwargs["mini_batch_size"] = args.mini_batch_size
kwargs["policy_noise"] = args.policy_noise * max_action
kwargs["noise_clip"] = args.noise_clip * max_action
kwargs["policy_freq"] = args.policy_freq
policy = memTD3.memTD3(**kwargs)
elif "memDDPG" in args.policy:
# if is either ALH-g/ALH-a
kwargs["mini_batch_size"] = args.mini_batch_size
kwargs["policy_noise"] = args.policy_noise * max_action
kwargs["noise_clip"] = args.noise_clip * max_action
kwargs["policy_freq"] = args.policy_freq
policy = memDDPG.memDDPG(**kwargs)
if args.load_model != "":
policy_file = file_name if args.load_model == "default" else args.load_model
policy.load(f"../models/{policy_file}")
replay_buffer = utils.ReplayBuffer(state_dim, action_dim, device=device)
# Evaluate untrained policy
evaluations = [eval_policy(policy, args.env, args.seed)]
state, done = env.reset(options=options), False
episode_reward = 0
episode_timesteps = 0
episode_num = 0
if args.save_model:
policy.save(filename=f'../models/{file_name}_0')
for t in tqdm.auto.tqdm(range(int(args.max_timesteps)), f"Training {file_name}..."):
episode_timesteps += 1
# Select action randomly or according to policy
if t < start_timesteps:
action = env.action_space.sample()
else:
action = (policy.select_action(np.array(state)) + np.random.normal(0, max_action * args.expl_noise,
size=action_dim)).clip(-max_action,
max_action)
# Perform action
next_state, reward, done, _ = env.step(action)
if args.policy == 'memTD32' or args.policy == 'memDDPG_adaptive':
# if is ALH-a
policy.watch(state, action, reward)
done_bool = float(done)
# Store data in replay buffer
replay_buffer.add(state, action, next_state, reward, done_bool)
state = next_state
episode_reward += reward
# Train agent after collecting sufficient data
if t >= start_timesteps:
policy.train(replay_buffer, args.batch_size)
if done:
# Reset environment
state, done = env.reset(options=options), False
episode_reward = 0
episode_timesteps = 0
episode_num += 1
if args.policy == 'memTD32' or args.policy == 'memDDPG_adaptive':
# if is ALH-a
policy.forget()
# Evaluate episode
if (t + 1) % args.eval_freq == 0:
evaluations.append(eval_policy(policy, args.env, args.seed))
np.save(f"../results/{file_name}", evaluations)
if args.save_model:
policy.save(f"../models/{file_name}_{str(t + 1)}")