This repository has been archived by the owner on Feb 14, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 212
/
Copy pathtest_video.py
200 lines (159 loc) · 7.04 KB
/
test_video.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
import argparse
from pathlib import Path
from tqdm import tqdm
import torch
import torch.nn as nn
import numpy as np
from PIL import Image
import cv2
import imageio
from torchvision import transforms
from torchvision.utils import save_image
import net
from function import adaptive_instance_normalization, coral
import warnings
warnings.filterwarnings("ignore")
def test_transform(size, crop):
transform_list = []
if size != 0:
transform_list.append(transforms.Resize(size))
if crop:
transform_list.append(transforms.CenterCrop(size))
transform_list.append(transforms.ToTensor())
transform = transforms.Compose(transform_list)
return transform
def style_transfer(vgg, decoder, content, style, alpha=1.0,
interpolation_weights=None):
assert (0.0 <= alpha <= 1.0)
content_f = vgg(content)
style_f = vgg(style)
if interpolation_weights:
_, C, H, W = content_f.size()
feat = torch.FloatTensor(1, C, H, W).zero_().to(device)
base_feat = adaptive_instance_normalization(content_f, style_f)
for i, w in enumerate(interpolation_weights):
feat = feat + w * base_feat[i:i + 1]
content_f = content_f[0:1]
else:
feat = adaptive_instance_normalization(content_f, style_f)
feat = feat * alpha + content_f * (1 - alpha)
return decoder(feat)
parser = argparse.ArgumentParser()
# Basic options
parser.add_argument('--content_video', type=str,
help='File path to the content video')
parser.add_argument('--style_path', type=str,
help='File path to the style video or single image')
parser.add_argument('--vgg', type=str, default='models/vgg_normalised.pth')
parser.add_argument('--decoder', type=str, default='models/decoder.pth')
# Additional options
parser.add_argument('--content_size', type=int, default=512,
help='New (minimum) size for the content image, \
keeping the original size if set to 0')
parser.add_argument('--style_size', type=int, default=512,
help='New (minimum) size for the style image, \
keeping the original size if set to 0')
parser.add_argument('--crop', action='store_true',
help='do center crop to create squared image')
parser.add_argument('--save_ext', default='.mp4',
help='The extension name of the output video')
parser.add_argument('--output', type=str, default='output',
help='Directory to save the output image(s)')
# Advanced options
parser.add_argument('--preserve_color', action='store_true',
help='If specified, preserve color of the content image')
parser.add_argument('--alpha', type=float, default=1.0,
help='The weight that controls the degree of \
stylization. Should be between 0 and 1')
parser.add_argument(
'--style_interpolation_weights', type=str, default='',
help='The weight for blending the style of multiple style images')
args = parser.parse_args()
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
output_dir = Path(args.output)
output_dir.mkdir(exist_ok = True, parents = True)
# --content_video should be given.
assert (args.content_video)
if args.content_video:
content_path = Path(args.content_video)
# --style_path should be given
assert (args.style_path)
if args.style_path:
style_path = Path(args.style_path)
decoder = net.decoder
vgg = net.vgg
decoder.eval()
vgg.eval()
decoder.load_state_dict(torch.load(args.decoder))
vgg.load_state_dict(torch.load(args.vgg))
vgg = nn.Sequential(*list(vgg.children())[:31])
vgg.to(device)
decoder.to(device)
content_tf = test_transform(args.content_size, args.crop)
style_tf = test_transform(args.style_size, args.crop)
#get video fps & video size
content_video = cv2.VideoCapture(args.content_video)
fps = int(content_video.get(cv2.CAP_PROP_FPS))
content_video_length = int(content_video.get(cv2.CAP_PROP_FRAME_COUNT))
output_width = int(content_video.get(cv2.CAP_PROP_FRAME_WIDTH))
output_height = int(content_video.get(cv2.CAP_PROP_FRAME_HEIGHT))
assert fps != 0, 'Fps is zero, Please enter proper video path'
pbar = tqdm(total = content_video_length)
if style_path.suffix in [".mp4", ".mpg", ".avi"]:
style_video = cv2.VideoCapture(args.style_path)
style_video_length = int(style_video.get(cv2.CAP_PROP_FRAME_COUNT))
assert style_video_length==content_video_length, 'Content video and style video has different number of frames'
output_video_path = output_name = output_dir / '{:s}_stylized_{:s}{:s}'.format(
content_path.stem, style_path.stem, args.save_ext)
writer = imageio.get_writer(output_video_path, mode='I', fps=fps)
while(True):
ret, content_img = content_video.read()
if not ret:
break
_, style_img = style_video.read()
content = content_tf(Image.fromarray(content_img))
style = style_tf(Image.fromarray(style_img))
if args.preserve_color:
style = coral(style, content)
style = style.to(device).unsqueeze(0)
content = content.to(device).unsqueeze(0)
with torch.no_grad():
output = style_transfer(vgg, decoder, content, style,
args.alpha)
output = output.cpu()
output = output.squeeze(0)
output = np.array(output)*255
#output = np.uint8(output)
output = np.transpose(output, (1,2,0))
output = cv2.resize(output, (output_width, output_height), interpolation=cv2.INTER_CUBIC)
writer.append_data(np.array(output))
pbar.update(1)
style_video.release()
content_video.release()
if style_path.suffix in [".jpg", ".png", ".JPG", ".PNG"]:
output_video_path = output_dir / '{:s}_stylized_{:s}{:s}'.format(
content_path.stem, style_path.stem, args.save_ext)
writer = imageio.get_writer(output_video_path, mode='I', fps=fps)
style_img = Image.open(style_path)
while(True):
ret, content_img = content_video.read()
if not ret:
break
content = content_tf(Image.fromarray(content_img))
style = style_tf(style_img)
if args.preserve_color:
style = coral(style, content)
style = style.to(device).unsqueeze(0)
content = content.to(device).unsqueeze(0)
with torch.no_grad():
output = style_transfer(vgg, decoder, content, style,
args.alpha)
output = output.cpu()
output = output.squeeze(0)
output = np.array(output)*255
#output = np.uint8(output)
output = np.transpose(output, (1,2,0))
output = cv2.resize(output, (output_width, output_height), interpolation=cv2.INTER_CUBIC)
writer.append_data(np.array(output))
pbar.update(1)
content_video.release()