-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathlsim.py
257 lines (210 loc) · 8.47 KB
/
lsim.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
import tensorflow as tf
import numpy as np
from monodepth.utils.evaluate_kitti import evaluate_kitti
from lsim_model import LsimModel, monodepth_parameters
import os
tf.logging.set_verbosity(tf.logging.INFO)
HEIGHT = 256
WIDTH = 512
BATCH_SIZE = 4
EIGEN_CONFIG = {
'model_dir': './models/eigen/',
'dataset': 'kitti',
'train_filename': './monodepth/utils/filenames/eigen_train_files.txt',
'test_filename': './monodepth/utils/filenames/eigen_test_files.txt',
'base_path': '/mnt/data/data/',
'warm_start': None,
'model_params':
{
'disp_gradient_loss_weight': 0.1,
'lr_loss_weight': 1.0,
'alpha_image_loss': 0.85,
'learning_rate': 1e-4
}
}
CITYSCAPES_CONFIG = {
'model_dir': './models/cityscapes/',
'dataset': 'cityscapes',
'train_filename': './filenames/cityscapes_train_files.txt',
'test_filename': './filenames/cityscapes_test_files.txt',
'base_path': '/mnt/data/data/',
'warm_start': None,
'model_params':
{
'disp_gradient_loss_weight': 0.1,
'lr_loss_weight': 1.0,
'alpha_image_loss': 0.85,
'learning_rate': 1e-4
}
}
def read_image(path, base_path, dataset):
full_path = base_path + path
file_contents = tf.read_file(full_path)
img = tf.image.decode_jpeg(file_contents, channels=3)
# if the dataset is cityscapes, crop the bottom to remove the car hood
if dataset == 'cityscapes':
o_height = tf.shape(img)[0]
crop_height = (o_height * 4) // 5
img = img[:crop_height, :, :]
img = tf.image.convert_image_dtype(img, tf.float32)
img = tf.image.resize_images(
img, [HEIGHT, WIDTH], tf.image.ResizeMethod.AREA)
return img
def _augment(img, brightness, contrast, saturation, hue):
img = tf.image.adjust_brightness(img, delta=brightness)
img = tf.image.adjust_contrast(img, contrast_factor=contrast)
img = tf.image.adjust_saturation(img, saturation_factor=saturation)
img = tf.image.adjust_hue(img, delta=hue)
# The random_* ops do not necessarily clamp.
img = tf.clip_by_value(img, 0.0, 1.0)
return img
def augment_image_pair(left_image, right_image):
# randomly shift gamma
random_gamma = tf.random_uniform([], 0.8, 1.2)
left_image_aug = left_image ** random_gamma
right_image_aug = right_image ** random_gamma
# randomly shift brightness
random_brightness = tf.random_uniform([], 0.5, 2.0)
left_image_aug = left_image_aug * random_brightness
right_image_aug = right_image_aug * random_brightness
# randomly shift color
random_colors = tf.random_uniform([3], 0.8, 1.2)
white = tf.ones([tf.shape(left_image)[0], tf.shape(left_image)[1]])
color_image = tf.stack([white * random_colors[i] for i in range(3)], axis=2)
left_image_aug *= color_image
right_image_aug *= color_image
# saturate
left_image_aug = tf.clip_by_value(left_image_aug, 0, 1)
right_image_aug = tf.clip_by_value(right_image_aug, 0, 1)
return left_image_aug, right_image_aug
def _parse_function(line, base_path, dataset, mode):
path_left, path_right = tf.decode_csv(
records=line,
record_defaults=[[''], ['']],
field_delim=' ')
# path_left = tf.Print(path_left, [path_left, path_right])
img_left_temp = read_image(path_left, base_path=base_path, dataset=dataset)
img_right_temp = read_image(path_right, base_path=base_path, dataset=dataset)
if mode == tf.estimator.ModeKeys.TRAIN:
do_flip = tf.random_uniform([], 0, 1)
img_left = tf.cond(
do_flip > 0.5,
lambda: tf.image.flip_left_right(img_right_temp),
lambda: img_left_temp)
img_right = tf.cond(
do_flip > 0.5,
lambda: tf.image.flip_left_right(img_left_temp),
lambda: img_right_temp)
# randomly augment images
do_augment = tf.random_uniform([], 0, 1)
img_left, img_right = tf.cond(
do_augment > 0.5,
lambda: augment_image_pair(img_left, img_right),
lambda: (img_left, img_right))
else:
img_left = img_left_temp
img_right = img_right_temp
return {'left': img_left, 'right': img_right}
def train_input_fn(filename, base_path, dataset):
dataset = tf.data.TextLineDataset(filename) \
.shuffle(buffer_size=30000) \
.map(lambda line:
_parse_function(
line, base_path=base_path,
dataset=dataset, mode=tf.estimator.ModeKeys.TRAIN)) \
.apply(tf.contrib.data.batch_and_drop_remainder(BATCH_SIZE)) \
.prefetch(32) \
.repeat(1)
iterator = dataset.make_one_shot_iterator()
next_element = iterator.get_next()
return next_element, None
def test_input_fn(filename, base_path, dataset):
dataset = tf.data.TextLineDataset(filename) \
.map(lambda line:
_parse_function(
line, base_path=base_path,
dataset=dataset, mode=tf.estimator.ModeKeys.PREDICT)) \
.batch(1)
iterator = dataset.make_one_shot_iterator()
next_element = iterator.get_next()
return next_element, None
def monodepth_model_fn(features, labels, mode, params):
"""Model function for CNN."""
_params = monodepth_parameters(
encoder='vgg',
height=256,
width=512,
batch_size=8,
num_threads=8,
num_epochs=50,
do_stereo=False,
wrap_mode='border',
use_deconv=False,
alpha_image_loss=params["alpha_image_loss"],
disp_gradient_loss_weight=params["disp_gradient_loss_weight"],
lr_loss_weight=1.0,
full_summary=True)
if mode == tf.estimator.ModeKeys.TRAIN:
_mode = 'train'
else:
_mode = 'test'
model = LsimModel(_params, _mode,
features['left'], features['right'])
start_learning_rate = params['learning_rate']
total_steps = params['total_steps']
global_step = tf.train.get_global_step()
boundaries = [np.int32((3/5) * total_steps), np.int32((4/5) * total_steps)]
values = [start_learning_rate, start_learning_rate / 2, start_learning_rate / 4]
learning_rate = tf.train.piecewise_constant(global_step, boundaries, values)
tf.summary.scalar('learning_rate', learning_rate)
# Configure the Training Op (for TRAIN mode)
if mode == tf.estimator.ModeKeys.TRAIN:
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
train_op = optimizer.minimize(
loss=model.total_loss,
global_step=global_step)
return tf.estimator.EstimatorSpec(mode=mode, loss=model.total_loss, train_op=train_op)
elif mode == tf.estimator.ModeKeys.PREDICT:
predictions = {
# Generate predictions (for PREDICT and EVAL mode)
'left_disp_est': model.disp_left_est[0],
'right_disp_est': model.disp_right_est[0]
}
return tf.estimator.EstimatorSpec(
mode=_mode, predictions=predictions)
def main():
# args = parse_args()
config = EIGEN_CONFIG
chkp_state = tf.train.get_checkpoint_state(config['model_dir'])
try:
current_step = int(os.path.basename(chkp_state.model_checkpoint_path).split('-')[1])
except AttributeError:
current_step = 0
train_size = sum(1 for line in open(config['train_filename']))
current_epoch = current_step // (train_size // BATCH_SIZE)
total_epochs = 50
print('Current epoch: {}, current step: {}, total train size: {}'.format(
current_epoch, current_step, train_size))
total_steps = (train_size // BATCH_SIZE) * total_epochs
config['model_params']['total_steps'] = total_steps
if not os.path.exists(config['model_dir']):
os.makedirs(config['model_dir'])
eval_log_file = open(os.path.join(config['model_dir'], 'eval.log'), 'a+')
for epoch in range(current_epoch, total_epochs):
print("########### Starting epoch {} ###############".format(epoch))
if epoch == 0 and \
not os.path.exists(os.path.join(config['model_dir'], 'checkpoint')):
ws = config['warm_start']
else:
ws = None
est = tf.estimator.Estimator(
model_fn=monodepth_model_fn,
model_dir=config['model_dir'],
warm_start_from=ws,
params=config['model_params'])
est.train(input_fn=lambda: train_input_fn(
config['train_filename'],
config['base_path'],
config['dataset']))
if __name__ == '__main__':
main()