-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcreate_xys.py
117 lines (91 loc) · 3.34 KB
/
create_xys.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
import numpy as np
from skimage import io
from skimage.transform import rotate, resize
import os
import cv2
import pandas as pd
import glob
import random
import shutil
import argparse
parser = argparse.ArgumentParser()
parser.add_argument('--Fsplit', type=str, default='./Fsplit/',
help='path destination for Fsplit folder')
parser.add_argument('--patch_size', type=int, default=32,
help='dimensions of the patch size you wish to use')
parser.add_argument('--step', type=int, default=16,
help='step that will be used to extract the patches along the x y dimesnions')
args = parser.parse_args()
patch_s = args.patch_size
step = args.step
Ftrain = np.load(args.Fsplit + 'Ftrain.npy').tolist()
Fval = np.load(args.Fsplit + 'Fval.npy').tolist()
def shuffle(vector):
vector = np.asarray(vector)
p=np.random.permutation(len(vector))
vector=vector[p]
return vector
def sliding_window_train(i_city, labeled_areas, label, window_size, step):
city=[]
fpatches_labels=[]
x=0
while (x!=label.shape[0]):
y=0
while(y!=label.shape[1]):
if (not y+window_size > label.shape[1]) and (not x+window_size > label.shape[0]):
line=np.array([x,y, labeled_areas.index(i_city)])
city.append(line)
new_patch_label = label[x:x + window_size, y:y + window_size]
ff=np.where(new_patch_label==1)
#if there are change pixels in the patch, move with a stride equal to step, else
#move with a stride equal to window_size(patch_size)
if ff[0].shape[0]==0:
stride=window_size
else:
stride=step
if y + window_size == label.shape[1]:
break
if y + window_size > label.shape[1]:
y = label.shape[1] - window_size
else:
y = y+stride
if x + window_size == label.shape[0]:
break
if x + window_size > label.shape[0]:
x = label.shape[0] - window_size
else:
x = x+stride
return np.asarray(city)
if os.path.exists('xys'):
shutil.rmtree('xys')
os.mkdir('xys')
cities=[]
for i_city in Ftrain:
print('train ', i_city)
path = i_city + '/change/change.tif'
train_gt = io.imread(path)
xy_city = sliding_window_train(i_city, Ftrain, train_gt, patch_s, step)
cities.append(xy_city)
final_cities = np.concatenate(cities, axis=0)
final_cities=shuffle(final_cities)
##save train xys to csv file
df = pd.DataFrame({'X': list(final_cities[:,0]),
'Y': list(final_cities[:,1]),
'image_ID': list(final_cities[:,2]),
})
df.to_csv('./xys/myxys_train.csv', index=False, columns=["X", "Y", "image_ID"])
cities=[]
for i_city in Fval:
print('val ', i_city)
path = i_city + '/change/change.tif'
val_gt = io.imread(path)
xy_city = sliding_window_train(i_city, Fval, val_gt, patch_s, patch_s)
cities.append(xy_city)
final_cities = np.concatenate(cities, axis=0)
final_cities=shuffle(final_cities)
##save val xys to csv file
df = pd.DataFrame({'X': list(final_cities[:,0]),
'Y': list(final_cities[:,1]),
'image_ID': list(final_cities[:,2]),
})
df.to_csv('./xys/myxys_val.csv', index=False, columns=["X", "Y", "image_ID"])