diff --git a/FormalBook/Chapter_04.lean b/FormalBook/Chapter_04.lean index aad3b33..4ea8ccc 100644 --- a/FormalBook/Chapter_04.lean +++ b/FormalBook/Chapter_04.lean @@ -107,9 +107,55 @@ variable (k : ℕ) [hk : Fact (4 * k + 1).Prime] /-- We study the set S -/ def S : Set (ℤ × ℤ × ℤ) := {((x, y, z) : ℤ × ℤ × ℤ) | 4 * x * y + z ^ 2 = 4 * k + 1 ∧ x > 0 ∧ y > 0} -noncomputable instance : Fintype (S k) := by +omit hk in +lemma S_lower_bound {x y z : ℤ} (h : ⟨x, y, z⟩ ∈ S k) : 0 < x ∧ 0 < y := by + simp only [gt_iff_lt, cast_pos, S, mem_setOf_eq] at h + constructor + · exact h.2.1 + · exact h.2.2 - sorry +omit hk in +lemma S_upper_bound {x y z : ℤ} (h : ⟨x, y, z⟩ ∈ S k) : + x ≤ k ∧ y ≤ k := by + obtain ⟨_, _⟩ := S_lower_bound k h + simp [S, mem_setOf_eq] at h + refine ⟨?_, ?_,⟩ + all_goals try nlinarith + +-- todo use Fin 2 instead of ({(0 : ℤ), 1}) +def embed_S : S k → Ioc (0 : ℤ) k ×ˢ Ioc (0 : ℤ) k ×ˢ ({(0 : ℤ), 1}) := + fun (⟨⟨x, y, z⟩, h⟩ : S k) ↦ by + have lb := S_lower_bound k h + have ub := S_upper_bound k h + exact ⟨⟨x, y, if 0 ≤ z then 1 else 0⟩, ⟨⟨lb.1, ub.1⟩, ⟨lb.2, ub.2⟩, by + simp; exact + Int.lt_or_le z 0 ⟩⟩ + +omit hk in +lemma embed_S_injective : Function.Injective (embed_S k):= by + intro s1 s2 hS + simp [embed_S] at hS + ext + · exact hS.1 + · exact hS.2.1 + · have := hS.2.2 + have ⟨⟨x1, y1, z1⟩, ⟨h1, _, _⟩⟩ := s1 + have ⟨⟨x2, y2, z2⟩, ⟨h2, _, _⟩⟩ := s2 + have hz_eq_z: z1 ^ 2 = z2 ^ 2 := by + nlinarith + simp at this + by_cases hz1 : 0 ≤ z1 + · simp [hz1] at this + by_cases hz2 : 0 ≤ z2 + · nlinarith + · simp [hz2] at this + · by_cases hz2 : 0 ≤ z2 + · simp [hz2] at this + tauto + · nlinarith + +noncomputable instance : Fintype (S k) := by + refine' Fintype.ofInjective (embed_S k) (embed_S_injective k) end Sets @@ -160,8 +206,6 @@ theorem sameCard : Fintype.card (U k) = Fintype.card (T k) := by def secondInvo_fun := fun ((x,y,z) : ℤ × ℤ × ℤ) ↦ (x - y + z, y, 2 * y - z) -#check (U k : Set (S k)) - /-- The second involution that we study is an involution on the set U. -/ def secondInvo : Function.End (U k) := fun ⟨⟨⟨x, y, z⟩, hS⟩, h⟩ => ⟨⟨secondInvo_fun ⟨x, y, z⟩, by