-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimage_sampling.py
224 lines (183 loc) · 10.2 KB
/
image_sampling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
import numpy as np
import cv2 as cv
import matplotlib.pyplot as plt
import os
from scipy.spatial.distance import hamming
import glob
import json
import argparse
class ImageSampling:
def __init__(self, video_path, output_dir, config_file='cfgs/config.json') -> None:
self.video_path = video_path
self.output_dir = output_dir
self.config_file = config_file
self.config = self.get_default_config()
try:
with open(config_file, 'r') as f:
config = json.load(f)
self.config.update(config)
except:
print('Image sampling will use the default configuratioin')
@staticmethod
def get_default_config():
config = {}
config['cell_size'] = 30
config['resolution_levels'] = [2, 3, 4]
config['chessboard_pattern'] = (10, 7)
config['distance_threshold'] = 0.12
config['blur_threshold'] = 80
config['multi_score_threshold'] = 1000
config['key_pause'] = ord(' ')
config['key_exit'] = 27
config['text_color'] = (0, 0, 255)
config['status_font'] = cv.FONT_HERSHEY_DUPLEX
config['status_font_scale'] = 0.6
config['status_offset'] = (10, 25)
return config
def make_clean_directory(self, directory_path):
"""
Creates a new directory or cleans an existing one by removing all files
with extensions that match the pattern *.jpg, *.jpeg, *.JPG, *.JPEG, etc.
Args:
directory_path (str): Path to the directory to be created or cleaned.
"""
if not os.path.exists(directory_path):
os.makedirs(directory_path)
else:
# Find all files matching the pattern *.[jJpP]*[gG] and remove them
image_files = glob.glob(os.path.join(directory_path, '*.[jJpP]*[gG]'))
for image_file in image_files:
os.remove(image_file)
def laplacian_blur_metric(self, img):
"""
Computes a blur score for the given image using the Laplacian operator.
Args:
img (numpy.ndarray): The input image in BGR format.
Returns:
float: A blur score indicating the sharpness of the image.
Higher values indicate a sharper image, while lower values indicate more blur.
"""
# Convert image to grayscale
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
# Compute the Laplacian (second derivative)
laplacian = cv.Laplacian(gray, cv.CV_64F)
# Calculate blur score (mean of squared Laplacian values)
blur_score = np.mean(laplacian ** 2)
return blur_score
def find_chessboard_corners(self, img):
# Find 2D corner points from given images
gray = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
complete, pts = cv.findChessboardCorners(gray, self.config['chessboard_pattern'])
corners = None
if complete:
criteria = (cv.TERM_CRITERIA_EPS + cv.TERM_CRITERIA_MAX_ITER, 30, 0.001)
corners = cv.cornerSubPix(gray, pts, (11, 11), (-1, -1), criteria)
return corners
def multi_resolution_score(self, descriptor, resolution_level):
"""
Calculates a multi-resolution score for an image descriptor.
Args:
descriptor (list or array-like): A collection of numeric values representing features of an image.
resolution_level (int): The resolution level at which the descriptor is calculated. Higher values represent higher resolutions.
Returns:
float: A score calculated as the sum of the descriptor multiplied by a scaling factor based on the resolution level.
"""
return sum(descriptor) * (2 ** resolution_level)
def multi_resolution_descriptor(self, img, resolution_level=None, cell_size=None):
corners = self.find_chessboard_corners(img)
if corners is None:
raise ValueError("Can not find corners")
img_w, img_h = img.shape[1], img.shape[0]
if resolution_level is not None:
cell_width = img_w//(2**resolution_level)
cell_height = img_h//(2**resolution_level)
elif cell_size is not None:
cell_height = cell_size
cell_width = cell_size
descriptor = np.zeros(len(range(0, img_w - 1, cell_width)) * len(range(0, img_h - 1, cell_height)))
ind = 0
for i in range(0, img_h - 1, cell_height):
for j in range(0, img_w - 1, cell_width):
top_left_pt = (j, i)
bottom_right_pt = (min(j + cell_width, img_w - 1), min(i + cell_height, img_h - 1))
for conner in corners:
if top_left_pt [0] < conner[0][0] < bottom_right_pt[0] and top_left_pt[1] < conner[0][1] < bottom_right_pt[1]:
descriptor[ind] = 1
ind += 1
return descriptor
def run_img_sampling(self):
"""
Selects images from a video file based on certain criteria such as blur, hamming distance, and multi-resolution score.
Args:
video_file_path (str): Path to the input video file.
output_directory (str): Directory where selected images will be saved.
cell_size (tuple): Size of the cells for descriptor computation.
resolution_levels (list): List of resolution levels to compute descriptors.
chessboard_pattern (tuple): Chessboard pattern size for corner detection.
distance_threshold (float): Minimum hamming distance threshold between images.
blur_threshold (float): Maximum allowed blur threshold for an image.
multi_score_threshold (float): Minimum multi-resolution score threshold to select an image.
Returns:
list: A list of selected images.
"""
# Initialize window for displaying images
window_name = 'Image Selection'
video_capture = cv.VideoCapture(self.video_path)
assert video_capture.isOpened(), "Error: Unable to open video file."
# Initialize lists to store descriptors and selected images
all_descriptors = []
selected_images = []
selected_image_count = 0
# Create output folder for saving selected images
self.make_clean_directory(self.output_dir)
while True:
# Capture an image from the video
valid_frame, frame = video_capture.read()
if not valid_frame:
break
# Display the current frame
cv.putText(frame, f'Number of Selected Images: {selected_image_count}', self.config['status_offset'], self.config['status_font'], self.config['status_font_scale'], self.config['text_color'])
cv.imshow(window_name, frame)
# Process key events for image selection
key = cv.waitKey(10)
if key == self.config['key_pause']: # Space: Pause and show corners
key = cv.waitKey()
if key == ord('\r'): # Enter: Select image if it meets criteria
if self.laplacian_blur_metric(frame) > self.config['blur_threshold']: # Check if the image is not blurry
if len(selected_images) == 0:
selected_image_count += 1
image_save_path = os.path.join(self.output_dir, f'img_{selected_image_count}.jpg')
cv.imwrite(image_save_path, frame)
selected_images.append(frame)
all_descriptors.append(self.multi_resolution_descriptor(frame, cell_size=self.config['cell_size']))
else:
# Calculate hamming distances between current frame descriptor and all previous descriptors
new_frame_descriptor = self.multi_resolution_descriptor(frame, cell_size=self.config['cell_size'])
hamming_distances = [round(hamming(new_frame_descriptor, descriptor), 2) for descriptor in all_descriptors]
# print('==========================All Distances==========================')
# print(hamming_distances)
# Calculate multi-resolution score for the new frame
new_frame_multi_descriptors = [self.multi_resolution_descriptor(frame, resolution_level=resolution_level) for resolution_level in self.config['resolution_levels']]
multi_resolution_score_total = sum(self.multi_resolution_score(descriptor, resolution_level) for descriptor, resolution_level in zip(new_frame_multi_descriptors, self.config['resolution_levels']))
# print('===========================All Scores============================')
# print(multi_resolution_score_total)
# Select the image if it meets the distance and score thresholds
if all(distance > self.config['distance_threshold'] for distance in hamming_distances) and multi_resolution_score_total > self.config['multi_score_threshold']:
selected_image_count += 1
image_save_path = os.path.join(self.output_dir, f'img_{selected_image_count}.jpg')
cv.imwrite(image_save_path, frame)
selected_images.append(frame)
all_descriptors.append(new_frame_descriptor)
if key == self.config['key_exit']: # ESC: Exit and complete image selection
break
cv.destroyAllWindows()
return selected_images
if __name__ == '__main__':
# Add arguments
parser = argparse.ArgumentParser(prog='image_sampling', description='Image sampling from video')
parser.add_argument('video_path', type=str, help='specify the video file path')
parser.add_argument('out_dir', type=str, help='specify the output dir to save images')
parser.add_argument('-c', '--config_file', default='cfgs/config.json')
args = parser.parse_args()
img_selection = ImageSampling(args.video_path, args.out_dir)
img_selection.run_img_sampling()