-
Notifications
You must be signed in to change notification settings - Fork 15
/
Copy pathinference.py
344 lines (274 loc) · 17.6 KB
/
inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License.
import os
import sys
PACKAGE_PARENT = '..'
SCRIPT_DIR = os.path.dirname(os.path.realpath(os.path.join(os.getcwd(), os.path.expanduser(__file__))))
sys.path.append(os.path.normpath(os.path.join(SCRIPT_DIR, PACKAGE_PARENT)))
import json
import torch
import argparse
import logging
import pandas as pd
from PIL import Image
from tqdm import tqdm
import numpy as np
import torch.nn as nn
from datetime import datetime
from torchvision import transforms
from data.raster_label_visualizer import RasterLabelVisualizer
from models.end_to_end_Siam_UNet import SiamUnet
from utils.datasets import DisasterDataset
from eval.eval_building_level import _evaluate_tile, get_label_and_pred_polygons_for_tile_mask_input, allowed_classes
from torch.utils.tensorboard import SummaryWriter
config = {'labels_dmg': [0, 1, 2, 3, 4],
'labels_bld': [0, 1]}
parser = argparse.ArgumentParser(description='Building Damage Assessment Inference')
parser.add_argument('--output_dir', type=str, required=True, help='Path to an empty directory where outputs will be saved. This directory will be created if it does not exist.')
parser.add_argument('--data_img_dir', type=str, required=True, help='Path to a directory that contains input images.')
parser.add_argument('--data_inference_dict', type=str, required=True, help='Path to a json file that contains a dict of path information for each individual image to be used for inference.')
parser.add_argument('--data_mean_stddev', type=str, required=True, help='Path to a json file that contains mean and stddev for each tile used for normalization of each image patch.')
parser.add_argument('--label_map_json', type=str, required=True, help='Path to a json file that contains information between actual labels and encoded labels for classification task.')
parser.add_argument('--model', type=str, required=True, help='Path to a trained model to be used for inference.')
parser.add_argument('--gpu', type=str, default="cuda:0", help='GPU to run on.')
parser.add_argument('--experiment_name', type=str, default='infer', help='Choose a name for each inference test folder.')
parser.add_argument('--num_chips_to_viz', type=int, default=1, help='Number of patches to visualize in tensorboard for monitoring.')
args = parser.parse_args()
logging.basicConfig(stream=sys.stdout,
level=logging.INFO,
format='{asctime} {levelname} {message}',
style='{',
datefmt='%Y-%m-%d %H:%M:%S')
logging.info(f'Using PyTorch version {torch.__version__}.')
device = torch.device(args.gpu if torch.cuda.is_available() else "cpu")
logging.info(f'Using device: {device}.')
def main():
eval_results_val_dmg = pd.DataFrame(columns=['class', 'precision', 'recall', 'f1', 'accuracy'])
eval_results_val_dmg_building_level = pd.DataFrame(columns=['class', 'precision', 'recall', 'f1', 'accuracy'])
eval_results_val_bld = pd.DataFrame(columns=['class', 'precision', 'recall', 'f1', 'accuracy'])
# set up directories
logger_dir = os.path.join(args.output_dir, args.experiment_name, 'logs')
os.makedirs(logger_dir, exist_ok=True)
evals_dir = os.path.join(args.output_dir, args.experiment_name, 'evals')
os.makedirs(evals_dir, exist_ok=True)
output_dir = os.path.join(args.output_dir, args.experiment_name, 'output')
os.makedirs(output_dir, exist_ok=True)
# initialize logger instances
logger_test= SummaryWriter(log_dir=logger_dir)
# load test data
global test_dataset, test_loader, labels_set_dmg, labels_set_bld, viz
label_map = load_json_files(args.label_map_json)
viz = RasterLabelVisualizer(label_map=label_map)
test_dataset, samples_idx_list = load_dataset()
labels_set_dmg = config['labels_dmg']
labels_set_bld = config['labels_bld']
#load model and its state from the given checkpoint
model = SiamUnet()
checkpoint_path = args.model
if checkpoint_path and os.path.isfile(checkpoint_path):
logging.info('Loading checkpoint from {}'.format(checkpoint_path))
checkpoint = torch.load(checkpoint_path, map_location=device)
model.load_state_dict(checkpoint['state_dict'])
model = model.to(device=device)
logging.info(f"Using checkpoint at epoch {checkpoint['epoch']}, val f1 is {checkpoint.get('val_f1_avg', 'Not Available')}")
else:
logging.info('No valid checkpoint is provided.')
return
# inference
logging.info(f'Start model inference ...')
inference_start_time = datetime.now()
confusion_mtrx_df_val_dmg, confusion_mtrx_df_val_bld, confusion_mtrx_df_val_dmg_building_level = validate(test_dataset, model, logger_test, samples_idx_list, evals_dir)
inference_duration = datetime.now() - inference_start_time
logging.info((f'inference duration is {inference_duration.total_seconds()} seconds'))
logging.info(f'compute actual metrics for model evaluation based on validation set ...')
# damage level eval validation (pixelwise)
eval_results_val_dmg = compute_eval_metrics(labels_set_dmg, confusion_mtrx_df_val_dmg, eval_results_val_dmg)
f1_harmonic_mean = 0
metrics = 'f1'
for index, row in eval_results_val_dmg.iterrows():
if (int(row['class']) in labels_set_dmg[1:]) & (metrics == 'f1'):
f1_harmonic_mean += 1.0/(row[metrics]+1e-10)
f1_harmonic_mean = 4.0/f1_harmonic_mean
eval_results_val_dmg = eval_results_val_dmg.append({'class':'harmonic-mean-of-all', 'precision':'-', 'recall':'-', 'f1':f1_harmonic_mean, 'accuracy':'-'}, ignore_index=True)
# damage level eval validation (building-level)
eval_results_val_dmg_building_level = compute_eval_metrics(labels_set_dmg, confusion_mtrx_df_val_dmg_building_level, eval_results_val_dmg_building_level)
f1_harmonic_mean = 0
metrics = 'f1'
for index, row in eval_results_val_dmg_building_level.iterrows():
if (int(row['class']) in labels_set_dmg[1:]) & (metrics == 'f1'):
f1_harmonic_mean += 1.0/(row[metrics]+1e-10)
f1_harmonic_mean = 4.0/f1_harmonic_mean
eval_results_val_dmg_building_level = eval_results_val_dmg_building_level.append({'class':'harmonic-mean-of-all', 'precision':'-', 'recall':'-', 'f1':f1_harmonic_mean, 'accuracy':'-'}, ignore_index=True)
# bld detection eval validation (pixelwise)
eval_results_val_bld = compute_eval_metrics(labels_set_bld, confusion_mtrx_df_val_bld, eval_results_val_bld)
# save confusion metrices
confusion_mtrx_df_val_bld.to_csv(os.path.join(evals_dir, 'confusion_mtrx_bld.csv'), index=False)
confusion_mtrx_df_val_dmg.to_csv(os.path.join(evals_dir, 'confusion_mtrx_dmg.csv'), index=False)
confusion_mtrx_df_val_dmg_building_level.to_csv(os.path.join(evals_dir, 'confusion_mtrx_dmg_building_level.csv'), index=False)
# save evalution metrics
eval_results_val_bld.to_csv(os.path.join(evals_dir, 'eval_results_bld.csv'), index=False)
eval_results_val_dmg.to_csv(os.path.join(evals_dir, 'eval_results_dmg.csv'), index=False)
eval_results_val_dmg_building_level.to_csv(os.path.join(evals_dir, 'eval_results_dmg_building_level.csv'), index=False)
logging.info('Done')
return
def validate(loader, model, logger_test, samples_idx_list, evals_dir):
"""
Evaluate the model on dataset of the loader
"""
softmax = torch.nn.Softmax(dim=1)
model.eval() # put model to evaluation mode
confusion_mtrx_df_val_dmg = pd.DataFrame(columns=['img_idx', 'class', 'true_pos', 'true_neg', 'false_pos', 'false_neg', 'total'])
confusion_mtrx_df_val_bld = pd.DataFrame(columns=['img_idx', 'class', 'true_pos', 'true_neg', 'false_pos', 'false_neg', 'total'])
confusion_mtrx_df_val_dmg_building_level = pd.DataFrame(columns=['img_idx', 'class', 'true_pos', 'true_neg', 'false_pos', 'false_neg', 'total'])
with torch.no_grad():
for img_idx, data in enumerate(tqdm(loader)): # assume batch size is 1
c = data['pre_image'].size()[0]
h = data['pre_image'].size()[1]
w = data['pre_image'].size()[2]
x_pre = data['pre_image'].reshape(1, c, h, w).to(device=device)
x_post = data['post_image'].reshape(1, c, h, w).to(device=device)
y_seg = data['building_mask'].to(device=device)
y_cls = data['damage_mask'].to(device=device)
scores = model(x_pre, x_post)
# compute accuracy for segmenation model on pre_ images
preds_seg_pre = torch.argmax(softmax(scores[0]), dim=1)
# modify damage prediction based on UNet arm predictions
for c in range(0,scores[2].shape[1]):
scores[2][:,c,:,:] = torch.mul(scores[2][:,c,:,:], preds_seg_pre)
preds_cls = torch.argmax(softmax(scores[2]), dim=1)
path_pred_mask = data['preds_img_dir'] +'.png'
logging.info('save png image for damage level predictions: ' + path_pred_mask)
im = Image.fromarray(preds_cls.cpu().numpy()[0,:,:].astype(np.uint8))
if not os.path.exists(os.path.split(data['preds_img_dir'])[0]):
os.makedirs(os.path.split(data['preds_img_dir'])[0])
im.save(path_pred_mask)
logging.info(f'saved image size: {preds_cls.size()}')
# compute building-level confusion metrics
pred_polygons_and_class, label_polygons_and_class = get_label_and_pred_polygons_for_tile_mask_input(y_cls.cpu().numpy().astype(np.uint8), path_pred_mask)
results, list_preds, list_labels = _evaluate_tile(pred_polygons_and_class, label_polygons_and_class, allowed_classes, 0.1)
total_objects = results[-1]
for label_class in results:
if label_class != -1:
true_pos_cls = results[label_class]['tp'] if 'tp' in results[label_class].keys() else 0
true_neg_cls = results[label_class]['tn'] if 'tn' in results[label_class].keys() else 0
false_pos_cls = results[label_class]['fp'] if 'fp' in results[label_class].keys() else 0
false_neg_cls = results[label_class]['fn'] if 'fn' in results[label_class].keys() else 0
confusion_mtrx_df_val_dmg_building_level = confusion_mtrx_df_val_dmg_building_level.append({'img_idx':img_idx, 'class':label_class, 'true_pos':true_pos_cls, 'true_neg':true_neg_cls, 'false_pos':false_pos_cls, 'false_neg':false_neg_cls, 'total':total_objects}, ignore_index=True)
# compute comprehensive pixel-level comfusion metrics
confusion_mtrx_df_val_dmg = compute_confusion_mtrx(confusion_mtrx_df_val_dmg, img_idx, labels_set_dmg, preds_cls, y_cls, y_seg)
confusion_mtrx_df_val_bld = compute_confusion_mtrx(confusion_mtrx_df_val_bld, img_idx, labels_set_bld, preds_seg_pre, y_seg, [])
# add viz results to logger
if img_idx in samples_idx_list:
prepare_for_vis(img_idx, logger_test, model, device, softmax)
return confusion_mtrx_df_val_dmg, confusion_mtrx_df_val_bld, confusion_mtrx_df_val_dmg_building_level
def load_dataset():
splits = load_json_files(args.data_inference_dict)
data_mean_stddev = load_json_files(args.data_mean_stddev)
test_ls = []
for item, val in splits.items():
test_ls += val['test']
test_dataset = DisasterDataset(args.data_img_dir, test_ls, data_mean_stddev, transform=False, normalize=True)
logging.info('xBD_disaster_dataset test length: {}'.format(len(test_dataset)))
assert len(test_dataset) > 0
samples_idx_list = get_sample_images(test_dataset)
logging.info('items selected for viz: {}'.format(samples_idx_list))
return test_dataset, samples_idx_list
def compute_eval_metrics(labels_set, confusion_mtrx_df, eval_results):
for cls in labels_set:
class_idx = (confusion_mtrx_df['class']==cls)
precision = confusion_mtrx_df.loc[class_idx,'true_pos'].sum()/(confusion_mtrx_df.loc[class_idx,'true_pos'].sum() + confusion_mtrx_df.loc[class_idx,'false_pos'].sum() + sys.float_info.epsilon)
recall = confusion_mtrx_df.loc[class_idx,'true_pos'].sum()/(confusion_mtrx_df.loc[class_idx,'true_pos'].sum() + confusion_mtrx_df.loc[class_idx,'false_neg'].sum() + sys.float_info.epsilon)
f1 = 2 * (precision * recall)/(precision + recall + sys.float_info.epsilon)
accuracy = (confusion_mtrx_df.loc[class_idx,'true_pos'].sum() + confusion_mtrx_df.loc[class_idx,'true_neg'].sum())/(confusion_mtrx_df.loc[class_idx,'total'].sum() + sys.float_info.epsilon)
eval_results = eval_results.append({'class':cls, 'precision':precision, 'recall':recall, 'f1':f1, 'accuracy':accuracy}, ignore_index=True)
return eval_results
def compute_confusion_mtrx(confusion_mtrx_df, img_idx, labels_set, y_preds, y_true, y_true_bld_mask):
for cls in labels_set[1:]:
confusion_mtrx_df = compute_confusion_mtrx_class(confusion_mtrx_df, img_idx, labels_set, y_preds, y_true, y_true_bld_mask, cls)
return confusion_mtrx_df
def compute_confusion_mtrx_class(confusion_mtrx_df, img_idx, labels_set, y_preds, y_true, y_true_bld_mask, cls):
y_true_binary = y_true.detach().clone()
y_preds_binary = y_preds.detach().clone()
if len(labels_set) > 2:
# convert to 0/1
y_true_binary[y_true_binary != cls] = -1
y_preds_binary[y_preds_binary != cls] = -1
y_true_binary[y_true_binary == cls] = 1
y_preds_binary[y_preds_binary == cls] = 1
y_true_binary[y_true_binary == -1] = 0
y_preds_binary[y_preds_binary == -1] = 0
# compute confusion metric
true_pos_cls = ((y_true_binary == y_preds_binary) & (y_true_binary == 1) & (y_true_bld_mask == 1)).float().sum().item()
false_neg_cls = ((y_true_binary != y_preds_binary) & (y_true_binary == 1) & (y_true_bld_mask == 1)).float().sum().item()
true_neg_cls = ((y_true_binary == y_preds_binary) & (y_true_binary == 0) & (y_true_bld_mask == 1)).float().sum().item()
false_pos_cls = ((y_true_binary != y_preds_binary) & (y_true_binary == 0) & (y_true_bld_mask == 1)).float().sum().item()
# compute total pixels
total_pixels = y_true_bld_mask.float().sum().item()
else:
# compute confusion metric
true_pos_cls = ((y_true_binary == y_preds_binary) & (y_true_binary == 1)).float().sum().item()
false_neg_cls = ((y_true_binary != y_preds_binary) & (y_true_binary == 1)).float().sum().item()
true_neg_cls = ((y_true_binary == y_preds_binary) & (y_true_binary == 0)).float().sum().item()
false_pos_cls = ((y_true_binary != y_preds_binary) & (y_true_binary == 0)).float().sum().item()
# compute total pixels
total_pixels = 1
for item in y_true_binary.size():
total_pixels *= item
confusion_mtrx_df = confusion_mtrx_df.append({'class':cls, 'img_idx':img_idx, 'true_pos':true_pos_cls, 'true_neg':true_neg_cls, 'false_pos':false_pos_cls, 'false_neg':false_neg_cls, 'total':total_pixels}, ignore_index=True)
return confusion_mtrx_df
def prepare_for_vis(item, logger, model, device, softmax):
iteration = 0
data = test_dataset[item]
c = data['pre_image'].size()[0]
h = data['pre_image'].size()[1]
w = data['pre_image'].size()[2]
pre = data['pre_image'].reshape(1, c, h, w)
post = data['post_image'].reshape(1, c, h, w)
scores = model(pre.to(device=device), post.to(device=device))
preds_seg_pre = torch.argmax(softmax(scores[0]), dim=1)
preds_seg_post = torch.argmax(softmax(scores[1]), dim=1)
# modify damage prediction based on UNet arm predictions
for c in range(0,scores[2].shape[1]):
scores[2][:,c,:,:] = torch.mul(scores[2][:,c,:,:], preds_seg_pre)
# visualize predictions and add to tensorboard
tag = 'pr_bld_mask_pre_test_id_' + str(item)
logger.add_image(tag, preds_seg_pre, iteration, dataformats='CHW')
tag = 'pr_bld_mask_post_test_id_' + str(item)
logger.add_image(tag, preds_seg_post, iteration, dataformats='CHW')
tag = 'pr_dmg_mask_test_id_' + str(item)
im, buf = viz.show_label_raster(torch.argmax(softmax(scores[2]), dim=1).cpu().numpy(), size=(5, 5))
preds_cls = transforms.ToTensor()(transforms.ToPILImage()(np.array(im)).convert("RGB"))
logger.add_image(tag, preds_cls, iteration, dataformats='CHW')
# visualize GT and add to tensorboard
pre = data['pre_image']
tag = 'gt_img_pre_test_id_' + str(item)
logger.add_image(tag, data['pre_image_orig'], iteration, dataformats='CHW')
post = data['post_image']
tag = 'gt_img_post_test_id_' + str(item)
logger.add_image(tag, data['post_image_orig'], iteration, dataformats='CHW')
gt_seg = data['building_mask'].reshape(1, h, w)
tag = 'gt_bld_mask_test_id_' + str(item)
logger.add_image(tag, gt_seg, iteration, dataformats='CHW')
im, buf = viz.show_label_raster(np.array(data['damage_mask']), size=(5, 5))
gt_cls = transforms.ToTensor()(transforms.ToPILImage()(np.array(im)).convert("RGB"))
tag = 'gt_dmg_mask_test_id_' + str(item)
logger.add_image(tag, gt_cls, iteration, dataformats='CHW')
return
def get_sample_images(dataset):
assert len(dataset) > args.num_chips_to_viz
samples_idx_list = []
from random import randint
for sample_idx in range(0, args.num_chips_to_viz):
value = randint(0, len(dataset))
samples_idx_list.append(value)
return samples_idx_list
def load_json_files(json_filename):
with open(json_filename) as f:
file_content = json.load(f)
return file_content
def dump_json_files(json_filename, my_dict):
with open(json_filename, 'w') as f:
json.dump(my_dict, f, indent=4)
return
if __name__ == "__main__":
main()