-
Notifications
You must be signed in to change notification settings - Fork 372
/
Copy pathdump_caffe_layers.py
29 lines (23 loc) · 935 Bytes
/
dump_caffe_layers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
#
# Run this file from docker:
#
# docker run -v [absolute path to your keras_Realtime_Multi-Person_Pose_Estimation folder]:/workspace -it bvlc/caffe:cpu python dump_caffe_layers.py
#
from __future__ import division, print_function
import caffe
import numpy as np
import os
layers_output = 'model/caffe/layers'
caffe_model = 'model/caffe/_trained_COCO/pose_iter_440000.caffemodel'
caffe_proto = 'model/caffe/_trained_COCO/pose_deploy.prototxt'
caffe.set_mode_cpu()
net = caffe.Net(caffe_proto, caffe_model, caffe.TEST)
# layer names and output shapes
for layer_name, blob in net.blobs.iteritems():
print(layer_name, blob.data.shape)
# write out weight matrices and bias vectors
for k, v in net.params.items():
print(k, v[0].data.shape, v[1].data.shape)
np.save(os.path.join(layers_output, "W_{:s}.npy".format(k)), v[0].data)
np.save(os.path.join(layers_output, "b_{:s}.npy".format(k)), v[1].data)
print("Done !")