-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathstring_based_matching_MAKG.py
50 lines (45 loc) · 2.36 KB
/
string_based_matching_MAKG.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
#Searches the MAKG dumps for the strings contained in checked_file.
import re
from flashtext import KeywordProcessor
keyword_processor = KeywordProcessor(case_sensitive=True)
data_set_count = {}
#File which is checked
#Do this for all files in dataset-knowledge-graph/string-matching-MAKG-dumps/data
with open("/File_Checked.txt", "r") as inp:
for line in inp:
data_set_name = line.strip().strip("'").strip('"')
data_set_name_cleaned = re.sub(r"[\(\)]", "", data_set_name).strip()
data_set_count[data_set_name_cleaned] = 0
keyword_processor.add_keyword(data_set_name_cleaned)
line_count = 1
abstract_count = data_set_count.copy()
with open("/PaperAbstracts_CS_nonPatent.txt", "r") as inp:
with open("File_Checked_abstract_matches_CS.txt", "w") as outp:
for line in inp:
print("Paper Abstract: " + str(line_count))
paper_id, abstract = line.strip("\n").split("\t")
keywords_found = keyword_processor.extract_keywords(abstract, span_info=True)
if keywords_found:
for keyword in keywords_found:
abstract_count[keyword[0]] += 1
outp.write("\t".join(map(str, keyword)) + "\t" + "\t".join([paper_id]) + "\n")
line_count += 1
with open("File_Checked_abstract_count_CS.txt", "w") as outp:
for item in abstract_count:
outp.write(str(item) + "\t" + str(abstract_count[item]) + "\n")
line_count = 1
citation_context_count = data_set_count.copy()
with open("/PaperCitationContexts.txt", "r") as inp:
with open("File_Checked_citation_matches.txt", "w") as outp:
for line in inp:
print("Citation Context: " + str(line_count))
paper_id, reference_id, citation_context = line.strip("\n").split("\t")
keywords_found = keyword_processor.extract_keywords(citation_context, span_info=True)
if keywords_found:
for keyword in keywords_found:
citation_context_count[keyword[0]] += 1
outp.write("\t".join(map(str, keyword)) + "\t" + "\t".join([paper_id, reference_id, citation_context]) + "\n")
line_count += 1
with open("File_Checked_citation_count.txt", "w") as outp:
for item in citation_context_count:
outp.write(str(item) + "\t" + str(citation_context_count[item]) + "\n")