-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
187 lines (146 loc) · 7.53 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
import torch.utils.data as data
import numpy as np
import math
import torch
import os
import errno
import open3d as o3d
from skimage import measure
def mkdir_p(dir_path):
try:
os.makedirs(dir_path)
except OSError as e:
if e.errno != errno.EEXIST:
raise
def isdir(dirname):
return os.path.isdir(dirname)
def normalize_pts(input_pts):
center_point = np.mean(input_pts, axis=0)
center_point = center_point[np.newaxis, :]
centered_pts = input_pts - center_point
largest_radius = np.amax(np.sqrt(np.sum(centered_pts ** 2, axis=1)))
normalized_pts = centered_pts / largest_radius # / 1.03 if we follow DeepSDF completely
return normalized_pts
def normalize_normals(input_normals):
normals_magnitude = np.sqrt(np.sum(input_normals ** 2, axis=1))
normals_magnitude = normals_magnitude[:, np.newaxis]
normalized_normals = input_normals / normals_magnitude
return normalized_normals
def showMeshReconstruction(IF):
"""
calls marching cubes on the input implicit function sampled in the 3D grid
and shows the reconstruction mesh
Args:
IF : implicit function sampled at the grid points
Returns:
verts, triangles: vertices and triangles of the polygon mesh after iso-surfacing it at level 0
"""
verts, triangles, normals, values = measure.marching_cubes(IF, 0)
# Create an empty triangle mesh
mesh = o3d.geometry.TriangleMesh()
# Use mesh.vertex to access the vertices' attributes
mesh.vertices = o3d.utility.Vector3dVector(verts)
# Use mesh.triangle to access the triangles' attributes
mesh.triangles = o3d.utility.Vector3iVector(triangles.astype(np.int32))
mesh.compute_vertex_normals()
o3d.visualization.draw_geometries([mesh])
return verts, triangles
def signed_distance(p, points, normals):
"""
Computes the signed distance between a point p and a surface defined by a set of points and normals.
Args:
p (ndarray): 3D point.
points (ndarray): 3D points that define the surface.
normals (ndarray): 3D normals of the surface at the corresponding points.
Returns:
The signed distance between the point p and the surface.
"""
diffs = p - points
dists = np.sqrt(np.sum(diffs ** 2, axis=1))
signs = np.sign(np.sum(diffs * normals, axis=1))
sd = np.multiply(dists, signs)
return sd
class SdfDataset(data.Dataset):
def __init__(self, points=None, normals=None, phase='train', args=None):
self.phase = phase
if self.phase == 'test':
self.bs = args.test_batch
max_dimensions = np.ones((3,)) * args.max_xyz
min_dimensions = -np.ones((3,)) * args.max_xyz
bounding_box_dimensions = max_dimensions - min_dimensions # compute the bounding box dimensions of the point cloud
grid_spacing = max(bounding_box_dimensions) / (
args.grid_N - 9) # each cell in the grid will have the same size
X, Y, Z = np.meshgrid(list(
np.arange(min_dimensions[0] - grid_spacing * 4, max_dimensions[0] + grid_spacing * 4, grid_spacing)),
list(np.arange(min_dimensions[1] - grid_spacing * 4,
max_dimensions[1] + grid_spacing * 4,
grid_spacing)),
list(np.arange(min_dimensions[2] - grid_spacing * 4,
max_dimensions[2] + grid_spacing * 4,
grid_spacing))) # N x N x N
self.grid_shape = X.shape
self.samples_xyz = np.array([X.reshape(-1), Y.reshape(-1), Z.reshape(-1)]).transpose()
self.number_samples = self.samples_xyz.shape[0]
self.number_batches = math.ceil(self.number_samples * 1.0 / self.bs)
else:
self.points = points
self.normals = normals
self.sample_std = args.sample_std
self.bs = args.train_batch
self.number_points = self.points.shape[0]
self.number_samples = int(self.number_points * args.N_samples)
self.number_batches = math.ceil(self.number_samples * 1.0 / self.bs)
if phase == 'val':
print('val init')
self.samples_sdf = np.zeros((self.number_samples,))
self.samples_xyz = np.zeros((self.number_samples, 3))
for i in range(self.number_points):
# index = np.random.choice(self.number_points, 1)[0]
point = self.points[i, :]
normal = self.normals[i, :]
# Sample a point around the surface point along its normal direction
sample_point = (np.tile(point, (args.N_samples, 1)) +
np.random.normal(0, self.sample_std, size=(args.N_samples, 3)) *
np.tile(normal, (args.N_samples, 1)))
# print(sample_point.shape)
self.samples_xyz[(i) * args.N_samples:(i + 1) * args.N_samples, :] = sample_point
self.samples_sdf[(i) * args.N_samples:(i + 1) * args.N_samples] = signed_distance(sample_point,
point,
normal)
if phase == 'train':
print('train init')
self.samples_sdf = np.zeros((self.number_samples,))
self.samples_xyz = np.zeros((self.number_samples, 3))
for i in range(self.number_points):
# index = np.random.choice(self.number_points, 1)[0]
point = self.points[i, :]
normal = self.normals[i, :]
# Sample a point around the surface point along its normal direction
sample_point = (np.tile(point, (args.N_samples, 1)) +
np.random.normal(0, self.sample_std, size=(args.N_samples, 3)) *
np.tile(normal, (args.N_samples, 1)))
self.samples_xyz[(i) * args.N_samples:(i + 1) * args.N_samples, :] = sample_point
self.samples_sdf[(i) * args.N_samples:(i + 1) * args.N_samples] = signed_distance(sample_point,
point, normal)
new_row_indices = np.random.permutation(self.samples_xyz.shape[0])
# use advanced indexing to select the rows in the new order
self.samples_xyz = self.samples_xyz[new_row_indices]
self.samples_sdf = self.samples_sdf[new_row_indices]
def __len__(self):
return self.number_batches
def __getitem__(self, idx):
start_idx = idx * self.bs
end_idx = min(start_idx + self.bs, self.number_samples) # exclusive
if self.phase == 'val':
xyz = self.samples_xyz[start_idx:end_idx, :]
gt_sdf = self.samples_sdf[start_idx:end_idx]
elif self.phase == 'train': # sample points on the fly
xyz = self.samples_xyz[start_idx:end_idx, :]
gt_sdf = self.samples_sdf[start_idx:end_idx]
else:
assert self.phase == 'test'
xyz = self.samples_xyz[start_idx:end_idx, :]
if self.phase == 'test':
return {'xyz': torch.FloatTensor(xyz)}
else:
return {'xyz': torch.FloatTensor(xyz), 'gt_sdf': torch.FloatTensor(gt_sdf)}