-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodel.py
38 lines (34 loc) · 1.22 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import torch.nn as nn
import torch
from torch.nn.utils import weight_norm
class Decoder(nn.Module):
def __init__(
self,
args,
dropout_prob=0.1,
):
super(Decoder, self).__init__()
self.fc1 = weight_norm(nn.Linear(3, 512))
self.fc2 = weight_norm(nn.Linear(512, 512))
self.fc3 = weight_norm(nn.Linear(512, 512))
self.fc4 = weight_norm(nn.Linear(512, 509))
self.fc5 = weight_norm(nn.Linear(512, 512))
self.fc6 = weight_norm(nn.Linear(512, 512))
self.fc7 = weight_norm(nn.Linear(512, 512))
self.fc8 = nn.Linear(512, 1)
self.prelu = nn.PReLU()
self.dropout = nn.Dropout(dropout_prob)
self.tanh = nn.Tanh()
# input: N x 3
def forward(self, x_input):
x = self.dropout(self.prelu(self.fc1(x_input)))
x = self.dropout(self.prelu(self.fc2(x)))
x = self.dropout(self.prelu(self.fc3(x)))
x = self.dropout(self.prelu(self.fc4(x)))
x = torch.cat((x, x_input), dim=1)
x = self.dropout(self.prelu(self.fc5(x)))
x = self.dropout(self.prelu(self.fc6(x)))
x = self.dropout(self.prelu(self.fc7(x)))
x = self.fc8(x)
x = self.tanh(x)
return x