-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
241 lines (197 loc) · 8.36 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Sun Jan 1 17:30:57 2023
@author: Meysam
"""
import matplotlib.pyplot as plt
import numpy as np
from skimage.color import rgb2lab, label2rgb
from skimage.segmentation import slic, mark_boundaries, slic_superpixels
from skimage import io
from skimage.measure import regionprops
from skimage.future.graph import rag_mean_color, show_rag, cut_threshold, merge_hierarchical
from skimage.filters import gaussian
from skimage import segmentation, color, filters
from skimage.future import graph
def display_inital_segmentaion(adabtive_SLIC, label, image, im_number, n_segments, compactness='adabtive'):
""" SHOWING SLIC/Adabtive SLIC segmentation results
SLIC_type is string "SLIC" or "adabtive SLIC"""
if adabtive_SLIC:
SLIC_type = 'Adabtive SLIC'
else:
SLIC_type = 'SLIC'
label = label.astype(int)
label_rgb = label2rgb(label, image=image, kind='avg')
label_rgb = np.interp(label_rgb, (label_rgb.min(), label_rgb.max()), (0, 1))
plt.figure(dpi=200)
plt.imshow(label_rgb)
plt.title(SLIC_type + ' segmentation - picture ' + str(im_number) +
'\n compactness: ' + str(compactness) +
' number of segments: ' + str(n_segments))
label_rgb = mark_boundaries(image=image, label_img=label, color=(0, 0, 0))
plt.figure(dpi=200)
plt.imshow(label_rgb)
plt.title(SLIC_type + ' segmentation on original image - picture ' + str(im_number) +
'\n compactness: ' + str(compactness) +
' number of segments: ' + str(n_segments))
def Ncuts_merging(adabtive_SLIC, label, image, im_number, thresh, n_segments, num_cuts, compactness='Adabtive'):
"""Ncuts on the RAG"""
if adabtive_SLIC:
SLIC_type = 'Adabtive SLIC'
else:
SLIC_type = 'SLIC'
rag = rag_mean_color(image, label, mode='similarity')
Ncuts_label = graph.cut_normalized(label, rag, thresh=thresh, num_cuts=num_cuts)
new_final_label_rgb = color.label2rgb(Ncuts_label, image, kind='avg', bg_label=0)
# normalize the output of label2rgb to [0, 1]
new_final_label_rgb = np.interp(new_final_label_rgb, (new_final_label_rgb.min(), new_final_label_rgb.max()), (0, 1))
plt.figure(dpi=200)
plt.imshow(new_final_label_rgb)
plt.title(SLIC_type + ' Segmentation merged by NCuts - picture ' + str(im_number) +
'\n compactness: ' + str(compactness) +
' number of segments: ' + str(n_segments) +
'\n Threshold: ' + str(thresh) +
' number of cuts: ' + str(num_cuts))
label_rgb = mark_boundaries(image=image, label_img=Ncuts_label, color=(0, 0, 0))
plt.figure(dpi=200)
plt.imshow(label_rgb)
plt.title(SLIC_type + ' segmentation on original image merged by Ncuts - picture ' + str(im_number) +
'\n compactness: ' + str(compactness) +
' number of segments: ' + str(n_segments) +
'\n Threshold: ' + str(thresh) +
' number of cuts: ' + str(num_cuts))
return Ncuts_label
def _weight_mean_color(graph, src, dst, n):
"""Callback to handle merging nodes by recomputing mean color.
The method expects that the mean color of `dst` is already computed.
Parameters
----------
graph : RAG
The graph under consideration.
src, dst : int
The vertices in `graph` to be merged.
n : int
A neighbor of `src` or `dst` or both.
Returns
-------
data : dict
A dictionary with the `"weight"` attribute set as the absolute
difference of the mean color between node `dst` and `n`.
"""
diff = graph.nodes[dst]['mean color'] - graph.nodes[n]['mean color']
diff = np.linalg.norm(diff)
return {'weight': diff}
def merge_mean_color(graph, src, dst):
"""Callback called before merging two nodes of a mean color distance graph.
This method computes the mean color of `dst`.
Parameters
----------
graph : RAG
The graph under consideration.
src, dst : int
The vertices in `graph` to be merged.
"""
graph.nodes[dst]['total color'] += graph.nodes[src]['total color']
graph.nodes[dst]['pixel count'] += graph.nodes[src]['pixel count']
graph.nodes[dst]['mean color'] = (graph.nodes[dst]['total color'] /
graph.nodes[dst]['pixel count'])
def display_inital_RAG(adabtive_SLIC, label, image, im_number, n_segments, compactness='Adabtive'):
""" Displaying the graphs and the weights of each graph"""
if adabtive_SLIC:
SLIC_type = 'Adabtive SLIC'
else:
SLIC_type = 'SLIC'
## RAG
rag = rag_mean_color(image, label)
## plot
fig, ax = plt.subplots(sharex=True, sharey=True, figsize=(6, 8))
lc = show_rag(label, rag, image, img_cmap='gray', ax=ax)
# specify the fraction of the plot area that will be used to draw the colorbar
fig.colorbar(lc, fraction=0.03, ax=ax)
fig.dpi = 200
ax.axis('off')
plt.title(SLIC_type + ' initial RAG with weight colorbar - picture ' + str(im_number) +
'\n compactness: ' + str(compactness) +
' number of segments: ' + str(n_segments))
plt.tight_layout()
plt.show()
def Hierarchical_merging(adabtive_SLIC, label, image, im_number, threshold, n_segments, compactness='adabtive'):
""" Hierarchical merging of the RAG
# n_segments and compactness are just for plot's title"""
if adabtive_SLIC:
SLIC_type = 'Adabtive SLIC'
else:
SLIC_type = 'SLIC'
#RAG
rag = rag_mean_color(image, label)
Hierarchical_label = merge_hierarchical(labels=label,
rag=rag,
thresh=threshold,
in_place_merge=True,
rag_copy=False,
merge_func=merge_mean_color,
weight_func=_weight_mean_color)
# Disply the results
plt.figure(dpi=200)
fig, ax = plt.subplots(sharex=True, sharey=True, figsize=(6, 8))
lc = show_rag(label, rag, image, ax=ax)
fig.colorbar(lc, fraction=0.03, ax=ax)
fig.dpi = 200
plt.title(SLIC_type + ' RAG after hierarchical merging - picture ' + str(im_number) +
'\n compactness: ' + str(compactness) +
' number of segments: ' + str(n_segments) +
'\n Threshold: ' + str(threshold))
new_final_label_rgb = label2rgb(Hierarchical_label, image, kind='avg')
new_final_label_rgb = np.interp(new_final_label_rgb, (new_final_label_rgb.min(), new_final_label_rgb.max()), (0, 1))
plt.figure(dpi=200)
plt.imshow(new_final_label_rgb)
plt.title(SLIC_type + ' Segmentation after hierarchical merging - picture ' + str(im_number) +
'\n compactness: ' + str(compactness) +
' number of segments: ' + str(n_segments) +
'\n Threshold: ' + str(threshold))
Hierarchical_label_rgb = mark_boundaries(image=image, label_img=Hierarchical_label, color=(0, 0, 0))
plt.figure(dpi=200)
plt.imshow(Hierarchical_label_rgb)
plt.title(SLIC_type + ' segmentation after hierarchical merging on original image- picture ' + str(im_number) +
'\n compactness: ' + str(compactness) +
' number of segments: ' + str(n_segments) +
'\n Threshold: ' + str(threshold))
from skimage import data, segmentation, filters, color
from skimage.future import graph
from matplotlib import pyplot as plt
def weight_boundary(graph, src, dst, n):
"""
Handle merging of nodes of a region boundary region adjacency graph.
This function computes the `"weight"` and the count `"count"`
attributes of the edge between `n` and the node formed after
merging `src` and `dst`.
Parameters
----------
graph : RAG
The graph under consideration.
src, dst : int
The vertices in `graph` to be merged.
n : int
A neighbor of `src` or `dst` or both.
Returns
-------
data : dict
A dictionary with the "weight" and "count" attributes to be
assigned for the merged node.
"""
default = {'weight': 0.0, 'count': 0}
count_src = graph[src].get(n, default)['count']
count_dst = graph[dst].get(n, default)['count']
weight_src = graph[src].get(n, default)['weight']
weight_dst = graph[dst].get(n, default)['weight']
count = count_src + count_dst
return {
'count': count,
'weight': (count_src * weight_src + count_dst * weight_dst)/count
}
def merge_boundary(graph, src, dst):
"""Call back called before merging 2 nodes.
In this case we don't need to do any computation here.
"""
pass