-
Notifications
You must be signed in to change notification settings - Fork 606
/
Copy pathevalInstanceLevelSemanticLabeling.py
715 lines (604 loc) · 29.5 KB
/
evalInstanceLevelSemanticLabeling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
#!/usr/bin/python
#
# The evaluation script for instance-level semantic labeling.
# We use this script to evaluate your approach on the test set.
# You can use the script to evaluate on the validation set.
#
# Please check the description of the "getPrediction" method below
# and set the required environment variables as needed, such that
# this script can locate your results.
# If the default implementation of the method works, then it's most likely
# that our evaluation server will be able to process your results as well.
#
# To run this script, make sure that your results contain text files
# (one for each test set image) with the content:
# relPathPrediction1 labelIDPrediction1 confidencePrediction1
# relPathPrediction2 labelIDPrediction2 confidencePrediction2
# relPathPrediction3 labelIDPrediction3 confidencePrediction3
# ...
#
# - The given paths "relPathPrediction" point to images that contain
# binary masks for the described predictions, where any non-zero is
# part of the predicted instance. The paths must not contain spaces,
# must be relative to the root directory and must point to locations
# within the root directory.
# - The label IDs "labelIDPrediction" specify the class of that mask,
# encoded as defined in labels.py. Note that the regular ID is used,
# not the train ID.
# - The field "confidencePrediction" is a float value that assigns a
# confidence score to the mask.
#
# Note that this tool creates a file named "gtInstances.json" during its
# first run. This file helps to speed up computation and should be deleted
# whenever anything changes in the ground truth annotations or anything
# goes wrong.
# python imports
from __future__ import print_function, absolute_import, division
import os, sys
import fnmatch
from copy import deepcopy
# Cityscapes imports
from cityscapesscripts.helpers.csHelpers import *
from cityscapesscripts.evaluation.instances2dict import instances2dict
###################################
# PLEASE READ THESE INSTRUCTIONS!!!
###################################
# Provide the prediction file for the given ground truth file.
# Please read the instructions above for a description of
# the result file.
#
# The current implementation expects the results to be in a certain root folder.
# This folder is one of the following with decreasing priority:
# - environment variable CITYSCAPES_RESULTS
# - environment variable CITYSCAPES_DATASET/results
# - ../../results/"
# (Remember to set the variables using "export CITYSCAPES_<VARIABLE>=<path>".)
#
# Within the root folder, a matching prediction file is recursively searched.
# A file matches, if the filename follows the pattern
# <city>_123456_123456*.txt
# for a ground truth filename
# <city>_123456_123456_gtFine_instanceIds.png
def getPrediction( groundTruthFile , args ):
# determine the prediction path, if the method is first called
if not args.predictionPath:
rootPath = None
if 'CITYSCAPES_RESULTS' in os.environ:
rootPath = os.environ['CITYSCAPES_RESULTS']
elif 'CITYSCAPES_DATASET' in os.environ:
rootPath = os.path.join( os.environ['CITYSCAPES_DATASET'] , "results" )
else:
rootPath = os.path.join(os.path.dirname(os.path.realpath(__file__)),'..','..','results')
if not os.path.isdir(rootPath):
printError("Could not find a result root folder. Please read the instructions of this method.")
args.predictionPath = os.path.abspath(rootPath)
# walk the prediction path, if not happened yet
if not args.predictionWalk:
walk = []
for root, dirnames, filenames in os.walk(args.predictionPath):
walk.append( (root,filenames) )
args.predictionWalk = walk
csFile = getCsFileInfo(groundTruthFile)
filePattern = "{}_{}_{}*.txt".format( csFile.city , csFile.sequenceNb , csFile.frameNb )
predictionFile = None
for root, filenames in args.predictionWalk:
for filename in fnmatch.filter(filenames, filePattern):
if not predictionFile:
predictionFile = os.path.join(root, filename)
else:
printError("Found multiple predictions for ground truth {}".format(groundTruthFile))
if not predictionFile:
printError("Found no prediction for ground truth {}".format(groundTruthFile))
return predictionFile
######################
# Parameters
######################
# A dummy class to collect all bunch of data
class CArgs(object):
pass
# And a global object of that class
args = CArgs()
# Where to look for Cityscapes
if 'CITYSCAPES_DATASET' in os.environ:
args.cityscapesPath = os.environ['CITYSCAPES_DATASET']
else:
args.cityscapesPath = os.path.join(os.path.dirname(os.path.realpath(__file__)),'..','..')
# Parameters that should be modified by user
args.exportFile = os.path.join( args.cityscapesPath , "evaluationResults" , "resultInstanceLevelSemanticLabeling.json" )
args.groundTruthSearch = os.path.join( args.cityscapesPath , "gtFine" , "val" , "*", "*_gtFine_instanceIds.png" )
# overlaps for evaluation
args.overlaps = np.arange(0.5,1.,0.05)
# minimum region size for evaluation [pixels]
args.minRegionSizes = np.array( [ 100 , 1000 , 1000 ] )
# distance thresholds [m]
args.distanceThs = np.array( [ float('inf') , 100 , 50 ] )
# distance confidences
args.distanceConfs = np.array( [ -float('inf') , 0.5 , 0.5 ] )
args.gtInstancesFile = os.path.join(os.path.dirname(os.path.realpath(__file__)),'gtInstances.json')
args.distanceAvailable = False
args.JSONOutput = True
args.quiet = False
args.csv = False
args.colorized = True
args.instLabels = []
# store some parameters for finding predictions in the args variable
# the values are filled when the method getPrediction is first called
args.predictionPath = None
args.predictionWalk = None
# Determine the labels that have instances
def setInstanceLabels(args):
args.instLabels = []
for label in labels:
if label.hasInstances and not label.ignoreInEval:
args.instLabels.append(label.name)
# Read prediction info
# imgFile, predId, confidence
def readPredInfo(predInfoFileName,args):
predInfo = {}
if (not os.path.isfile(predInfoFileName)):
printError("Infofile '{}' for the predictions not found.".format(predInfoFileName))
with open(predInfoFileName, 'r') as f:
for line in f:
splittedLine = line.split(" ")
if len(splittedLine) != 3:
printError( "Invalid prediction file. Expected content: relPathPrediction1 labelIDPrediction1 confidencePrediction1" )
if os.path.isabs(splittedLine[0]):
printError( "Invalid prediction file. First entry in each line must be a relative path." )
filename = os.path.join( os.path.dirname(predInfoFileName),splittedLine[0] )
filename = os.path.abspath( filename )
# check if that file is actually somewhere within the prediction root
if os.path.commonprefix( [filename,args.predictionPath] ) != args.predictionPath:
printError( "Predicted mask {} in prediction text file {} points outside of prediction path.".format(filename,predInfoFileName) )
imageInfo = {}
imageInfo["labelID"] = int(float(splittedLine[1]))
imageInfo["conf"] = float(splittedLine[2])
predInfo[filename] = imageInfo
return predInfo
# Routine to read ground truth image
def readGTImage(gtImageFileName,args):
return Image.open(gtImageFileName)
# either read or compute a dictionary of all ground truth instances
def getGtInstances(groundTruthList,args):
gtInstances = {}
# if there is a global statistics json, then load it
if (os.path.isfile(args.gtInstancesFile)):
if not args.quiet:
print("Loading ground truth instances from JSON.")
with open(args.gtInstancesFile) as json_file:
gtInstances = json.load(json_file)
# otherwise create it
else:
if (not args.quiet):
print("Creating ground truth instances from png files.")
gtInstances = instances2dict(groundTruthList,not args.quiet)
writeDict2JSON(gtInstances, args.gtInstancesFile)
return gtInstances
# Filter instances, ignore labels without instances
def filterGtInstances(singleImageInstances,args):
instanceDict = {}
for labelName in singleImageInstances:
if not labelName in args.instLabels:
continue
instanceDict[labelName] = singleImageInstances[labelName]
return instanceDict
# match ground truth instances with predicted instances
def matchGtWithPreds(predictionList,groundTruthList,gtInstances,args):
matches = {}
if not args.quiet:
print("Matching {} pairs of images...".format(len(predictionList)))
count = 0
for (pred,gt) in zip(predictionList,groundTruthList):
# key for dicts
dictKey = os.path.abspath(gt)
# Read input files
gtImage = readGTImage(gt,args)
predInfo = readPredInfo(pred,args)
# Get and filter ground truth instances
unfilteredInstances = gtInstances[ dictKey ]
curGtInstancesOrig = filterGtInstances(unfilteredInstances,args)
# Try to assign all predictions
(curGtInstances,curPredInstances) = assignGt2Preds(curGtInstancesOrig, gtImage, predInfo, args)
# append to global dict
matches[ dictKey ] = {}
matches[ dictKey ]["groundTruth"] = curGtInstances
matches[ dictKey ]["prediction"] = curPredInstances
count += 1
if not args.quiet:
print("\rImages Processed: {}".format(count), end=' ')
sys.stdout.flush()
if not args.quiet:
print("")
return matches
# For a given frame, assign all predicted instances to ground truth instances
def assignGt2Preds(gtInstancesOrig, gtImage, predInfo, args):
# In this method, we create two lists
# - predInstances: contains all predictions and their associated gt
# - gtInstances: contains all gt instances and their associated predictions
predInstances = {}
predInstCount = 0
# Create a prediction array for each class
for label in args.instLabels:
predInstances[label] = []
# We already know about the gt instances
# Add the matching information array
gtInstances = deepcopy(gtInstancesOrig)
for label in gtInstances:
for gt in gtInstances[label]:
gt["matchedPred"] = []
# Make the gt a numpy array
gtNp = np.array(gtImage)
# Get a mask of void labels in the groundtruth
voidLabelIDList = []
for label in labels:
if label.ignoreInEval:
voidLabelIDList.append(label.id)
boolVoid = np.in1d(gtNp, voidLabelIDList).reshape(gtNp.shape)
# Loop through all prediction masks
for predImageFile in predInfo:
# Additional prediction info
labelID = predInfo[predImageFile]["labelID"]
predConf = predInfo[predImageFile]["conf"]
# label name
labelName = id2label[int(labelID)].name
# maybe we are not interested in that label
if not labelName in args.instLabels:
continue
# Read the mask
predImage = Image.open(predImageFile)
predImage = predImage.convert("L")
predNp = np.array(predImage)
# make the image really binary, i.e. everything non-zero is part of the prediction
boolPredInst = predNp != 0
predPixelCount = np.count_nonzero( boolPredInst )
# skip if actually empty
if not predPixelCount:
continue
# The information we want to collect for this instance
predInstance = {}
predInstance["imgName"] = predImageFile
predInstance["predID"] = predInstCount
predInstance["labelID"] = int(labelID)
predInstance["pixelCount"] = predPixelCount
predInstance["confidence"] = predConf
# Determine the number of pixels overlapping void
predInstance["voidIntersection"] = np.count_nonzero( np.logical_and(boolVoid, boolPredInst) )
# A list of all overlapping ground truth instances
matchedGt = []
# Loop through all ground truth instances with matching label
# This list contains all ground truth instances that distinguish groups
# We do not know, if a certain instance is actually a single object or a group
# e.g. car or cargroup
# However, for now we treat both the same and do the rest later
for (gtNum,gtInstance) in enumerate(gtInstancesOrig[labelName]):
intersection = np.count_nonzero( np.logical_and( gtNp == gtInstance["instID"] , boolPredInst) )
# If they intersect add them as matches to both dicts
if (intersection > 0):
gtCopy = gtInstance.copy()
predCopy = predInstance.copy()
# let the two know their intersection
gtCopy["intersection"] = intersection
predCopy["intersection"] = intersection
# append ground truth to matches
matchedGt.append(gtCopy)
# append prediction to ground truth instance
gtInstances[labelName][gtNum]["matchedPred"].append(predCopy)
predInstance["matchedGt"] = matchedGt
predInstCount += 1
predInstances[labelName].append(predInstance)
return (gtInstances,predInstances)
def evaluateMatches(matches, args):
# In the end, we need two vectors for each class and for each overlap
# The first vector (y_true) is binary and is 1, where the ground truth says true,
# and is 0 otherwise.
# The second vector (y_score) is float [0...1] and represents the confidence of
# the prediction.
#
# We represent the following cases as:
# | y_true | y_score
# gt instance with matched prediction | 1 | confidence
# gt instance w/o matched prediction | 1 | 0.0
# false positive prediction | 0 | confidence
#
# The current implementation makes only sense for an overlap threshold >= 0.5,
# since only then, a single prediction can either be ignored or matched, but
# never both. Further, it can never match to two gt instances.
# For matching, we vary the overlap and do the following steps:
# 1.) remove all predictions that satisfy the overlap criterion with an ignore region (either void or *group)
# 2.) remove matches that do not satisfy the overlap
# 3.) mark non-matched predictions as false positive
# AP
overlaps = args.overlaps
# region size
minRegionSizes = args.minRegionSizes
# distance thresholds
distThs = args.distanceThs
# distance confidences
distConfs = args.distanceConfs
# only keep the first, if distances are not available
if not args.distanceAvailable:
minRegionSizes = [ minRegionSizes[0] ]
distThs = [ distThs [0] ]
distConfs = [ distConfs [0] ]
# last three must be of same size
if len(distThs) != len(minRegionSizes):
printError("Number of distance thresholds and region sizes different")
if len(distThs) != len(distConfs):
printError("Number of distance thresholds and confidences different")
# Here we hold the results
# First dimension is class, second overlap
ap = np.zeros( (len(distThs) , len(args.instLabels) , len(overlaps)) , float )
for dI,(minRegionSize,distanceTh,distanceConf) in enumerate(zip(minRegionSizes,distThs,distConfs)):
for (oI,overlapTh) in enumerate(overlaps):
for (lI,labelName) in enumerate(args.instLabels):
y_true = np.empty( 0 )
y_score = np.empty( 0 )
# count hard false negatives
hardFns = 0
# found at least one gt and predicted instance?
haveGt = False
havePred = False
for img in matches:
predInstances = matches[img]["prediction" ][labelName]
gtInstances = matches[img]["groundTruth"][labelName]
# filter groups in ground truth
gtInstances = [ gt for gt in gtInstances if gt["instID"]>=1000 and gt["pixelCount"]>=minRegionSize and gt["medDist"]<=distanceTh and gt["distConf"]>=distanceConf ]
if gtInstances:
haveGt = True
if predInstances:
havePred = True
curTrue = np.ones ( len(gtInstances) )
curScore = np.ones ( len(gtInstances) ) * (-float("inf"))
curMatch = np.zeros( len(gtInstances) , dtype=bool )
# collect matches
for (gtI,gt) in enumerate(gtInstances):
foundMatch = False
for pred in gt["matchedPred"]:
overlap = float(pred["intersection"]) / (gt["pixelCount"]+pred["pixelCount"]-pred["intersection"])
if overlap > overlapTh:
# the score
confidence = pred["confidence"]
# if we already hat a prediction for this groundtruth
# the prediction with the lower score is automatically a false positive
if curMatch[gtI]:
maxScore = max( curScore[gtI] , confidence )
minScore = min( curScore[gtI] , confidence )
curScore[gtI] = maxScore
# append false positive
curTrue = np.append(curTrue,0)
curScore = np.append(curScore,minScore)
curMatch = np.append(curMatch,True)
# otherwise set score
else:
foundMatch = True
curMatch[gtI] = True
curScore[gtI] = confidence
if not foundMatch:
hardFns += 1
# remove non-matched ground truth instances
curTrue = curTrue [ curMatch==True ]
curScore = curScore[ curMatch==True ]
# collect non-matched predictions as false positive
for pred in predInstances:
foundGt = False
for gt in pred["matchedGt"]:
overlap = float(gt["intersection"]) / (gt["pixelCount"]+pred["pixelCount"]-gt["intersection"])
if overlap > overlapTh:
foundGt = True
break
if not foundGt:
# collect number of void and *group pixels
nbIgnorePixels = pred["voidIntersection"]
for gt in pred["matchedGt"]:
# group?
if gt["instID"] < 1000:
nbIgnorePixels += gt["intersection"]
# small ground truth instances
if gt["pixelCount"] < minRegionSize or gt["medDist"]>distanceTh or gt["distConf"]<distanceConf:
nbIgnorePixels += gt["intersection"]
proportionIgnore = float(nbIgnorePixels)/pred["pixelCount"]
# if not ignored
# append false positive
if proportionIgnore <= overlapTh:
curTrue = np.append(curTrue,0)
confidence = pred["confidence"]
curScore = np.append(curScore,confidence)
# append to overall results
y_true = np.append(y_true,curTrue)
y_score = np.append(y_score,curScore)
# compute the average precision
if haveGt and havePred:
# compute precision recall curve first
# sorting and cumsum
scoreArgSort = np.argsort(y_score)
yScoreSorted = y_score[scoreArgSort]
yTrueSorted = y_true[scoreArgSort]
yTrueSortedCumsum = np.cumsum(yTrueSorted)
# unique thresholds
(thresholds,uniqueIndices) = np.unique( yScoreSorted , return_index=True )
# since we need to add an artificial point to the precision-recall curve
# increase its length by 1
nbPrecRecall = len(uniqueIndices) + 1
# prepare precision recall
nbExamples = len(yScoreSorted)
nbTrueExamples = yTrueSortedCumsum[-1]
precision = np.zeros(nbPrecRecall)
recall = np.zeros(nbPrecRecall)
# deal with the first point
# only thing we need to do, is to append a zero to the cumsum at the end.
# an index of -1 uses that zero then
yTrueSortedCumsum = np.append( yTrueSortedCumsum , 0 )
# deal with remaining
for idxRes,idxScores in enumerate(uniqueIndices):
cumSum = yTrueSortedCumsum[idxScores-1]
tp = nbTrueExamples - cumSum
fp = nbExamples - idxScores - tp
fn = cumSum + hardFns
p = float(tp)/(tp+fp)
r = float(tp)/(tp+fn)
precision[idxRes] = p
recall [idxRes] = r
# first point in curve is artificial
precision[-1] = 1.
recall [-1] = 0.
# compute average of precision-recall curve
# integration is performed via zero order, or equivalently step-wise integration
# first compute the widths of each step:
# use a convolution with appropriate kernel, manually deal with the boundaries first
recallForConv = np.copy(recall)
recallForConv = np.append( recallForConv[0] , recallForConv )
recallForConv = np.append( recallForConv , 0. )
stepWidths = np.convolve(recallForConv,[-0.5,0,0.5],'valid')
# integrate is now simply a dot product
apCurrent = np.dot( precision , stepWidths )
elif haveGt:
apCurrent = 0.0
else:
apCurrent = float('nan')
ap[dI,lI,oI] = apCurrent
return ap
def computeAverages(aps,args):
# max distance index
dInf = np.argmax( args.distanceThs )
d50m = np.where( np.isclose( args.distanceThs , 50. ) )
d100m = np.where( np.isclose( args.distanceThs , 100. ) )
o50 = np.where(np.isclose(args.overlaps,0.5 ))
avgDict = {}
avgDict["allAp"] = np.nanmean(aps[ dInf,:,: ])
avgDict["allAp50%"] = np.nanmean(aps[ dInf,:,o50])
if args.distanceAvailable:
avgDict["allAp50m"] = np.nanmean(aps[ d50m,:, :])
avgDict["allAp100m"] = np.nanmean(aps[d100m,:, :])
avgDict["allAp50%50m"] = np.nanmean(aps[ d50m,:,o50])
avgDict["classes"] = {}
for (lI,labelName) in enumerate(args.instLabels):
avgDict["classes"][labelName] = {}
avgDict["classes"][labelName]["ap"] = np.average(aps[ dInf,lI, :])
avgDict["classes"][labelName]["ap50%"] = np.average(aps[ dInf,lI,o50])
if args.distanceAvailable:
avgDict["classes"][labelName]["ap50m"] = np.average(aps[ d50m,lI, :])
avgDict["classes"][labelName]["ap100m"] = np.average(aps[d100m,lI, :])
avgDict["classes"][labelName]["ap50%50m"] = np.average(aps[ d50m,lI,o50])
return avgDict
def printResults(avgDict, args):
sep = ("," if args.csv else "")
col1 = (":" if not args.csv else "")
noCol = (colors.ENDC if args.colorized else "")
bold = (colors.BOLD if args.colorized else "")
lineLen = 50
if args.distanceAvailable:
lineLen += 40
print("")
if not args.csv:
print("#"*lineLen)
line = bold
line += "{:<15}".format("what" ) + sep + col1
line += "{:>15}".format("AP" ) + sep
line += "{:>15}".format("AP_50%" ) + sep
if args.distanceAvailable:
line += "{:>15}".format("AP_50m" ) + sep
line += "{:>15}".format("AP_100m" ) + sep
line += "{:>15}".format("AP_50%50m" ) + sep
line += noCol
print(line)
if not args.csv:
print("#"*lineLen)
for (lI,labelName) in enumerate(args.instLabels):
apAvg = avgDict["classes"][labelName]["ap"]
ap50o = avgDict["classes"][labelName]["ap50%"]
if args.distanceAvailable:
ap50m = avgDict["classes"][labelName]["ap50m"]
ap100m = avgDict["classes"][labelName]["ap100m"]
ap5050 = avgDict["classes"][labelName]["ap50%50m"]
line = "{:<15}".format(labelName) + sep + col1
line += getColorEntry(apAvg , args) + sep + "{:>15.3f}".format(apAvg ) + sep
line += getColorEntry(ap50o , args) + sep + "{:>15.3f}".format(ap50o ) + sep
if args.distanceAvailable:
line += getColorEntry(ap50m , args) + sep + "{:>15.3f}".format(ap50m ) + sep
line += getColorEntry(ap100m, args) + sep + "{:>15.3f}".format(ap100m) + sep
line += getColorEntry(ap5050, args) + sep + "{:>15.3f}".format(ap5050) + sep
line += noCol
print(line)
allApAvg = avgDict["allAp"]
allAp50o = avgDict["allAp50%"]
if args.distanceAvailable:
allAp50m = avgDict["allAp50m"]
allAp100m = avgDict["allAp100m"]
allAp5050 = avgDict["allAp50%50m"]
if not args.csv:
print("-"*lineLen)
line = "{:<15}".format("average") + sep + col1
line += getColorEntry(allApAvg , args) + sep + "{:>15.3f}".format(allApAvg) + sep
line += getColorEntry(allAp50o , args) + sep + "{:>15.3f}".format(allAp50o) + sep
if args.distanceAvailable:
line += getColorEntry(allAp50m , args) + sep + "{:>15.3f}".format(allAp50m) + sep
line += getColorEntry(allAp100m, args) + sep + "{:>15.3f}".format(allAp100m) + sep
line += getColorEntry(allAp5050, args) + sep + "{:>15.3f}".format(allAp5050) + sep
line += noCol
print(line)
print("")
def prepareJSONDataForResults(avgDict, aps, args):
JSONData = {}
JSONData["averages"] = avgDict
JSONData["overlaps"] = args.overlaps.tolist()
JSONData["minRegionSizes"] = args.minRegionSizes.tolist()
JSONData["distanceThresholds"] = args.distanceThs.tolist()
JSONData["minStereoDensities"] = args.distanceConfs.tolist()
JSONData["instLabels"] = args.instLabels
JSONData["resultApMatrix"] = aps.tolist()
return JSONData
# Work through image list
def evaluateImgLists(predictionList, groundTruthList, args):
# determine labels of interest
setInstanceLabels(args)
# get dictionary of all ground truth instances
gtInstances = getGtInstances(groundTruthList,args)
# match predictions and ground truth
matches = matchGtWithPreds(predictionList,groundTruthList,gtInstances,args)
writeDict2JSON(matches,"matches.json")
# evaluate matches
apScores = evaluateMatches(matches, args)
# averages
avgDict = computeAverages(apScores,args)
# result dict
resDict = prepareJSONDataForResults(avgDict, apScores, args)
if args.JSONOutput:
# create output folder if necessary
path = os.path.dirname(args.exportFile)
ensurePath(path)
# Write APs to JSON
writeDict2JSON(resDict, args.exportFile)
if not args.quiet:
# Print results
printResults(avgDict, args)
return resDict
# The main method
def main():
global args
argv = sys.argv[1:]
predictionImgList = []
groundTruthImgList = []
# the image lists can either be provided as arguments
if (len(argv) > 3):
for arg in argv:
if ("gt" in arg or "groundtruth" in arg):
groundTruthImgList.append(arg)
elif ("pred" in arg):
predictionImgList.append(arg)
# however the no-argument way is prefered
elif len(argv) == 0:
# use the ground truth search string specified above
groundTruthImgList = glob.glob(args.groundTruthSearch)
if not groundTruthImgList:
printError("Cannot find any ground truth images to use for evaluation. Searched for: {}".format(args.groundTruthSearch))
# get the corresponding prediction for each ground truth imag
for gt in groundTruthImgList:
predictionImgList.append( getPrediction(gt,args) )
# print some info for user
print("Note that this tool uses the file '{}' to cache the ground truth instances.".format(args.gtInstancesFile))
print("If anything goes wrong, or if you change the ground truth, please delete the file.")
# evaluate
evaluateImgLists(predictionImgList, groundTruthImgList, args)
return
# call the main method
if __name__ == "__main__":
main()