-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathsparsemul.pyx
76 lines (64 loc) · 1.79 KB
/
sparsemul.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
#cython: boundscheck=False
# Code ported from
# /~https://github.com/scipy/scipy/blob/master/scipy/sparse/sparsetools/csr.h#L1010
import numpy as n
cimport numpy as n
from cython.parallel import *
import scipy.sparse as sp
def spdot (spmat, n.ndarray[n.float32_t, ndim=1] Xx, n.ndarray[n.float32_t, ndim=1] Yx):
""" Computes the dot product sum of a sparse matrix in CSR format with a numpy vector. All float32.
Equivalent to Y += spmat.dot(X) """
assert (spmat.format == 'csr')
cdef unsigned int n_row = spmat.shape[0]
cdef n.ndarray[n.int32_t, ndim=1] Ap = spmat.indptr
cdef n.ndarray[n.int32_t, ndim=1] Aj = spmat.indices
cdef n.ndarray[n.float32_t, ndim=1] Ax = spmat.data
cdef unsigned int i, jj
cdef n.float32_t sum
with nogil:
for i in xrange(n_row):
sum = Yx[i]
jj = Ap[i]
while jj < Ap[i+1]:
sum = sum + Ax[jj] * Xx[Aj[jj]]
jj = jj + 1
Yx[i] = sum
return
#/*
#* Compute Y += A*X for CSR matrix A and dense vectors X,Y
#*
#*
#* Input Arguments:
#* I n_row - number of rows in A
#* I n_col - number of columns in A
#* I Ap[n_row+1] - row pointer
#* I Aj[nnz(A)] - column indices
#* T Ax[nnz(A)] - nonzeros
#* T Xx[n_col] - input vector
#*
#* Output Arguments:
#* T Yx[n_row] - output vector
#*
#* Note:
#* Output array Yx must be preallocated
#*
#* Complexity: Linear. Specifically O(nnz(A) + n_row)
#*
#*/
#template <class I, class T>
#void csr_matvec(const I n_row,
#const I n_col,
#const I Ap[],
#const I Aj[],
#const T Ax[],
#const T Xx[],
#T Yx[])
#{
# for(I i = 0; i < n_row; i++){
# T sum = Yx[i];
# for(I jj = Ap[i]; jj < Ap[i+1]; jj++){
# sum += Ax[jj] * Xx[Aj[jj]];
# }
# Yx[i] = sum;
# }
#}