forked from matthewkenely/mask-to-annotation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathannotation_helper.py
362 lines (277 loc) · 13.8 KB
/
annotation_helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
import colorsys
import cv2
import numpy as np
import matplotlib.pyplot as plt
import random
# Constants
# Noise Threshold
NOISE_THRESHOLD = 40
def single_object_bounding_box(mask, do_cvt):
# transforming image into a binary image
if do_cvt:
# transforming image into a binary image
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
# thresholding the image
_, mask = cv2.threshold(mask, 1, 255, cv2.THRESH_BINARY)
# increasing standard deviation to blur more (anti-aliasing)
mask = cv2.GaussianBlur(mask, (7, 7), sigmaX=1, sigmaY=1)
# applying dilation (optional) and erosion to the mask
kernel = np.ones((3, 3), np.uint8)
# dilated_mask = cv2.dilate(mask, dilation_kernel, iterations=1)
eroded_mask = cv2.erode(mask, kernel, iterations=1)
# outlining the contours in the image
contours, _ = cv2.findContours(
mask, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# variables to store the minimum and maximum x, y coordinates
min_x = min_y = float('inf')
max_x = max_y = 0
# looping through all the contours and finding the minimum and maximum x, y coordinates
for contour in contours:
x, y, w, h = cv2.boundingRect(contour)
min_x = min(min_x, x)
min_y = min(min_y, y)
max_x = max(max_x, x + w)
max_y = max(max_y, y + h)
# calculating the width and height of the bounding box
bounding_box_width = max_x - min_x
bounding_box_height = max_y - min_y
# creating the single bounding box using the calculated coordinates
single_bounding_box = (
min_x, min_y, bounding_box_width, bounding_box_height)
return [single_bounding_box]
def multiple_objects_bounding_box(mask, do_cvt):
# retrieving the connected components
components = component_labelling(mask)
# list to store the bounding boxes
bounding_boxes = []
# iterating over all the connected components
for label, component in components.items():
contours, _ = cv2.findContours(
component, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# sorting the contours based on their size, largest to smallest
contours = sorted(contours, key=lambda ctr: cv2.contourArea(ctr))[::-1]
# creating a bounding box for the largest connected component
x, y, w, h = cv2.boundingRect(contours[0])
bounding_box = (x, y, w, h)
# appending the bounding box to the list
bounding_boxes.append(bounding_box)
return bounding_boxes
def single_object_polygon_approximation(mask, epsilon, do_cvt):
# transforming image into a binary image
if do_cvt:
# transforming image into a binary image
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
# thresholding the image
_, mask = cv2.threshold(mask, 1, 255, cv2.THRESH_BINARY)
# increasing standard deviation to blur more (anti-aliasing)
mask = cv2.GaussianBlur(mask, (7, 7), sigmaX=1, sigmaY=1)
# applying dilation (optional) and erosion to the mask
kernel = np.ones((3, 3), np.uint8)
# dilated_mask = cv2.dilate(mask, dilation_kernel, iterations=1)
eroded_mask = cv2.erode(mask, kernel, iterations=1)
# outlining the contours in the image
contours, _ = cv2.findContours(
eroded_mask, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# looping through the contours
sorted_contours = []
for contour in contours:
area = cv2.contourArea(contour)
if area > NOISE_THRESHOLD: # removing small noise
# Approximating the polygon to reduce the number of points
approx_contour = cv2.approxPolyDP(
contour, epsilon * cv2.arcLength(contour, True), True)
sorted_contours.append(approx_contour)
# sorting the contours based on the y coordinate of the bounding box
sorted_contours = sorted(
sorted_contours, key=lambda ctr: cv2.boundingRect(ctr)[1])
return sorted_contours
def multiple_objects_polygon_approximation(mask, epsilon, do_cvt):
# retrieving the connected components
components = component_labelling(mask)
# Polygon approximation
object_contours = {}
# iterating over all the labels from 1 to num_labels (inclusive)
for target_label, component in components.items():
# retrieving the contours of the selected connected component
contours, _ = cv2.findContours(
component, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# looping through the contours
for contour in contours:
# calculating the area of the contour
area = cv2.contourArea(contour)
if area > NOISE_THRESHOLD: # removing small noise
# approximating the polygon to reduce the number of points
approx_contour = cv2.approxPolyDP(
contour, epsilon * cv2.arcLength(contour, True), True)
# adding the contour to the dictionary
if target_label not in object_contours:
object_contours[target_label] = []
object_contours[target_label].append(approx_contour)
return object_contours
def single_object_k_means_clustering(mask, max_clusters, do_cvt):
# transforming image into a binary image
if do_cvt:
# transforming image into a binary image
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
# thresholding the image
_, mask = cv2.threshold(mask, 1, 255, cv2.THRESH_BINARY)
# increasing standard deviation to blur more (repairing the mask)
mask = cv2.GaussianBlur(mask, (7, 7), sigmaX=1, sigmaY=1)
# applying dilation (optional) and erosion to the mask
kernel = np.ones((3, 3), np.uint8)
# dilated_mask = cv2.dilate(mask, dilation_kernel, iterations=1)
eroded_mask = cv2.erode(mask, kernel, iterations=1)
# outlining the contours in the image
contours, _ = cv2.findContours(
eroded_mask, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# sorting the contours based on the y coordinate of the bounding box
sorted_contours = sorted(
contours, key=lambda ctr: cv2.boundingRect(ctr)[1])
# flattening the contours and convert to np.float32
flattened_points = np.concatenate(
sorted_contours).squeeze().astype(np.float32)
# using k-means clustering to find cluster centers
if max_clusters > len(flattened_points):
max_clusters = len(flattened_points)
# using the elbow method to find the optimal number of clusters
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2)
'''
cv2.kmeans
----------
flattened_points :: samples
max_clusters :: max_clusters
bestLabels :: None
criteria ::
TERM_CRITERIA_EPS -> stop the algorithm iteration if specified accuracy, epsilon, is reached
0.2 -> epsilon
TERM_CRITERIA_MAX_ITER -> stop the algorithm after the specified number of iterations, max_iter
100 -> max_iter
attempts :: 10 (using different initial labellings)
flags :: KMEANS_RANDOM_CENTERS -> select random initial centers in each attempt
'''
_, labels, centers = cv2.kmeans(
flattened_points, max_clusters, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)
# converting back to contour format with int32 data type
kmeans_contours = [center.reshape(
(-1, 1, 2)).astype(np.int32) for center in centers]
# creating a convex hull using all the cluster centers
all_cluster_centers = np.concatenate(kmeans_contours)
convex_hull = cv2.convexHull(all_cluster_centers)
# drawing the convex hull to form the polygon annotation
annotations = [convex_hull]
return annotations
def multiple_objects_k_means_clustering(mask, max_clusters, do_cvt):
# retrieving the connected components
components = component_labelling(mask)
# K-means clustering
# initializing a dictionary to store the contours for each connected component
annotations = {}
# iterating over all the labels from 1 to num_labels (inclusive)
for label, component in components.items():
# retrieving the contours of the selected connected component
contours, _ = cv2.findContours(
component, cv2.RETR_LIST, cv2.CHAIN_APPROX_SIMPLE)
# checking if the list of contours is empty
if not contours:
continue
# flattening the contours and convert to np.float32
flattened_points = np.concatenate(
contours).squeeze().astype(np.float32)
# using k-means clustering to find cluster centers
if max_clusters > len(flattened_points):
max_clusters = len(flattened_points)
# using the elbow method to find the optimal number of clusters
criteria = (cv2.TERM_CRITERIA_EPS +
cv2.TERM_CRITERIA_MAX_ITER, 100, 0.2)
_, labels, centers = cv2.kmeans(
flattened_points, max_clusters, None, criteria, 10, cv2.KMEANS_RANDOM_CENTERS)
# converting back to contour format with int32 data type
kmeans_contours = [center.reshape(
(-1, 1, 2)).astype(np.int32) for center in centers]
# creating a convex hull using all the cluster centers
all_cluster_centers = np.concatenate(kmeans_contours)
convex_hull = cv2.convexHull(all_cluster_centers)
# storing the contours in the dictionary with the label as the key
annotations[label] = [convex_hull]
return annotations
def component_labelling(image, dynamic_threshold_factor=0.0003):
# dynamic threshold factor is used to calculate the dynamic threshold
# checking if the input image is colored (3 channels) or binary (1 channel)
if image.ndim == 3 and image.shape[-1] == 3: # colored mask
# converting the colored mask to HSV color space
hsv_mask = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)
# retrieving the unique colors present in the image (excluding black and white)
unique_colors, color_counts = np.unique(
hsv_mask.reshape(-1, hsv_mask.shape[2]), axis=0, return_counts=True)
# creating a mask for the background color
background_mask = np.zeros(hsv_mask.shape[:2], dtype=np.uint8)
background_mask[color_counts.argmin()] = 255
# calculating the dynamic threshold based on the total number of pixels in the image
min_pixel_threshold = int(
dynamic_threshold_factor * np.prod(hsv_mask.shape[:2]))
# creating a dictionary to store the masks for each color
components = {}
# defining a mask for each color and find contours for each mask
for label, color in enumerate(unique_colors):
# checking if the number of pixels for this color is greater than the threshold and not the background
if color_counts[label] > min_pixel_threshold and not np.all(color == hsv_mask[background_mask == 255][0]):
# Dynamic object identification using color-based segmentation
lower_color = np.array(
[color[0] - 10, max(0, color[1] - 40), max(0, color[2] - 40)])
upper_color = np.array(
[color[0] + 10, min(255, color[1] + 40), min(255, color[2] + 40)])
# creating a mask for the selected color
color_mask = cv2.inRange(hsv_mask, lower_color, upper_color)
# increasing standard deviation to blur more (repairing the mask)
blurred_mask = cv2.GaussianBlur(
color_mask, (7, 7), sigmaX=1, sigmaY=1)
# applying dilation (optional) and erosion to the mask
kernel = np.ones((3, 3), np.uint8)
# dilated_mask = cv2.dilate(mask, dilation_kernel, iterations=1)
eroded_mask = cv2.erode(blurred_mask, kernel, iterations=1)
components[label] = eroded_mask
# plt.imshow(eroded_mask, cmap='gray')
# plt.show()
else: # binary mask
components = {}
# finding the components in the binary image
num_labels, labels, stats, _ = cv2.connectedComponentsWithStats(
image, connectivity=8)
for label in range(1, num_labels):
# creating a mask for the selected component
component_mask = np.zeros(image.shape, dtype=np.uint8)
component_mask[labels == label] = 255
binary_mask = component_mask[:, :, 0]
# increasing standard deviation to blur more (repairing the mask)
blurred_mask = cv2.GaussianBlur(
binary_mask, (7, 7), sigmaX=1, sigmaY=1)
# applying dilation (optional) and erosion to the mask
kernel = np.ones((3, 3), np.uint8)
# dilated_mask = cv2.dilate(mask, dilation_kernel, iterations=1)
eroded_mask = cv2.erode(blurred_mask, kernel, iterations=1)
components[label] = eroded_mask
print('\033[94m', "\n Number of objects detected: ",
len(components), '\033[0m')
# Returning the dictionary of masks
return components
def multiple_object_annotation_color(annotation_color, threshold=0.3):
# extracting color channels
red, green, blue = annotation_color
# Using passed color:
# generating a random color
# random_red = random.uniform(-threshold * 255, threshold * 255)
# random_green = random.uniform(-threshold * 255, threshold * 255)
# random_blue = random.uniform(-threshold * 255, threshold * 255)
# adding the random color to the annotation color
# new_red = max(0, min(255, red + random_red))
# new_green = max(0, min(255, green + random_green))
# new_blue = max(0, min(255, blue + random_blue))
# return (new_red, new_green, new_blue)
# Using random bright colors:
# generating a random color
hue = random.uniform(0, 360)
# converting the HSV color to RGB
hsv_color = (hue / 360, 1, 1)
random_rgb = tuple(int(i * 255) for i in colorsys.hsv_to_rgb(*hsv_color))
# returning the new color
return random_rgb