-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathinit.lua
306 lines (290 loc) · 11 KB
/
init.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
require 'xlua'
require 'image'
require 'torch'
require 'libstitch'
local Stitcher = torch.class('stitcher')
function Stitcher:__init(pto_file)
if not pto_file then
error("You must pass a .pto file (output of hugin or panotools)")
end
self.pto_file = pto_file
-- need to move initialization into get info function
self.nimages = 0
self.imgwidth = {}
self.imgheight = {}
self.canvassize = {}
self.panocrop = {}
-- process pto file (open for reading in quiet mode)
local f = torch.DiskFile(pto_file,'r',true)
local s = f:readString('*l')
local function exec( s )
return loadstring( 'return ' .. s )()
end
while s do
-- find panorama line
if s:match("^p ") then
local w = s:match(" w%d+"):gsub(" w","")
local h = s:match(" h%d+"):gsub(" h","")
self.canvassize = { w , h }
local crop = s:match(" S%d+,%d+,%d+,%d+"):gsub(" S","")
crop = exec ('{'..crop..'}')
self.panocrop = crop
-- find image lines
elseif s:match("^i ") then
self.nimages = self.nimages + 1
local w = s:match(" w%d+"):gsub(" w","")
local h = s:match(" h%d+"):gsub(" h","")
table.insert(self.imgwidth, tonumber(w))
table.insert(self.imgheight, tonumber(h))
end
s = f:readString('*l')
if f:hasError() then
f:close()
s = false
end
end
-- actual size of panorama produced is based on crop
self.panosize = {self.panocrop[2]-self.panocrop[1],
self.panocrop[4]-self.panocrop[3]}
self.panomidpt = self.panosize[1]/2
-- index is 2 numbers (index of image, offset to the xy for Red
-- pixel location in image)
self.index = torch.LongTensor(2,self.panosize[2],self.panosize[1])
end
-- extract all necessary information from .pto file
function Stitcher:get_info(fname)
local f = torch.DiskFile(fname,'r')
f:ascii()
end
-- wrapper to the command line hugin tool pano_trafo to make index
-- maps for all images in a .pto file
function Stitcher:make_maps()
local maps = {}
for i = 1,self.nimages do
local cmd = string.format("for y in `seq 1 %d` ; do for x in `seq 1 %d` ; do echo %d $x $y ; done ;done | pano_trafo %s",
self.imgheight[i],self.imgwidth[i],
i-1,self.pto_file)
maps[i] = torch.PipeFile(cmd,'r');
end
return maps
end
-- wrapper to the command line hugin tool pano_trafo to make index
-- maps for all images in a .pto file
function Stitcher:make_reverse_maps()
local maps = {}
for i = 1,self.nimages do
local cmd = string.format("for y in `seq %d %d` ; do for x in `seq %d %d` ; do echo $x $y ; done ;done | pano_trafo -r %s %d",
self.panocrop[3],
self.panocrop[3]+self.panosize[2],
self.panocrop[1],
self.panocrop[1]+self.panosize[1],
self.pto_file,i-1)
maps[i] = torch.PipeFile(cmd,'r');
end
return maps
end
function Stitcher:load_index(fname)
local f = torch.DiskFile(fname,'r')
f:binary()
self.index = f:readObject()
f:close()
end
function Stitcher:save_index(fname)
local f = torch.DiskFile(fname,'w')
f:binary()
f:writeObject(self.index)
f:close()
end
-- from a bunch of maps (torch.Files) produced with make_maps(),
-- create a single index self.index
function Stitcher:make_reverse_index(maps)
local ipatches = {}
local img_maxw = {}
local img_minw = {}
local img_maxwumpt = {}
local img_minwompt = {}
-- loops through the images and creates an index size of the panorama
-- with only the indexes to that image.
for i = 1,self.nimages do
if (self.nimages == 1) then
self.index:select(1,1):fill(1)
ipatches[1] = self.index:select(1,2)
else
ipatches[i] = torch.Tensor(self.panosize[2],self.panosize[1])
end
if torch.typename(maps[i]) ~= 'torch.PipeFile' then
maps[i]:seek(1)
end
local ioff = ipatches[i]
if not img_maxw[i] then img_maxw[i] = -math.huge end
if not img_minw[i] then img_minw[i] = math.huge end
if not img_maxwumpt[i] then img_maxwumpt[i] = -math.huge end
if not img_minwompt[i] then img_minwompt[i] = math.huge end
for py = 1,self.panosize[2] do
for px = 1,self.panosize[1] do
local imgx = math.floor(maps[i]:readFloat() + 0.5)
local imgy = math.floor(maps[i]:readFloat() + 0.5)
-- check if point is valid
if (((imgx > 0) and (imgx <= self.imgwidth[i]))
and
((imgy > 0) and (imgy <= self.imgheight[i]))) then
if px > self.panomidpt then
-- over midpoint
if px < img_minwompt[i] then img_minwompt[i] = px end
else
if px > img_maxwumpt[i] then img_maxwumpt[i] = px end
end
if px > img_maxw[i] then img_maxw[i] = px end
if px < img_minw[i] then img_minw[i] = px end
ioff[py][px] = imgy * self.imgwidth[i] + imgx
end
end
end
end
if self.nimages > 1 then
print(img_minw,img_maxw,img_minwompt,img_maxwumpt)
self:find_boundaries(ipatches,img_minw,img_maxw,
img_minwompt,img_maxwumpt)
end
end
-- from a bunch of maps (torch.Files) produced with make_maps(),
-- create a single index self.index
function Stitcher:make_index(maps)
local ipatches = {}
local img_maxw = {}
local img_minw = {}
local img_maxwumpt = {}
local img_minwompt = {}
-- loops through the images and creates an index size of the panorama
-- with only the indexes to that image.
for i = 1,self.nimages do
if (self.nimages == 1) then
self.index:select(1,1):fill(1)
ipatches[1] = self.index:select(1,2)
else
ipatches[i] = torch.Tensor(self.panosize[2],self.panosize[1])
end
if torch.typename(maps[i]) ~= 'torch.PipeFile' then
maps[i]:seek(1)
end
local ioff = ipatches[i]
if not img_maxw[i] then img_maxw[i] = -math.huge end
if not img_minw[i] then img_minw[i] = math.huge end
if not img_maxwumpt[i] then img_maxwumpt[i] = -math.huge end
if not img_minwompt[i] then img_minwompt[i] = math.huge end
for y = 1,self.imgheight[i] do
for x = 1,self.imgwidth[i] do
local px = math.floor(maps[i]:readFloat() + 0.5)
local py = math.floor(maps[i]:readFloat() + 0.5)
if (((px > self.panocrop[1]) and (px <= self.panocrop[2]))
and
((py > self.panocrop[3]) and (py <= self.panocrop[4]))) then
-- keep track of min and max extent in the panorama of
-- each image
if px > self.panomidpt then
-- over midpoint
if px < img_minwompt[i] then img_minwompt[i] = px end
else
-- under midpoint
if px > img_maxwumpt[i] then img_maxwumpt[i] = px end
end
if px > img_maxw[i] then img_maxw[i] = px end
if px < img_minw[i] then img_minw[i] = px end
local ipy = py-self.panocrop[3]
local ipx = px-self.panocrop[1]
-- fill index
ioff[ipy][ipx] = y * self.imgwidth[i] + x
end
end
end
end
if self.nimages > 1 then
print(img_minw,img_maxw,img_minwompt,img_maxwumpt)
self:find_boundaries(ipatches,img_minw,img_maxw,
img_minwompt,img_maxwumpt)
end
end
function Stitcher:find_boundaries (ipatches,img_minw,img_maxw,
img_minwompt,img_maxwumpt)
local wrapped_images = {}
-- more tricky to determine wrapped images (can have multiple)
for i = 1,self.nimages do
if img_minw[i] == 1 then
img_maxw[i] = img_maxwumpt[i]
img_minw[i] = img_minwompt[i]
wrapped_images[i] = true
else
wrapped_images[i] = false
end
end
-- find boundaries. Given the stored max and min index for each
-- image. compute overlaps and copy index to final panorama
-- loops through all the image maps and find the overlaps.
-- Picks 1/2 way point of overlap to switch input images in the
-- output. Assumes horizonal sequential images, so not very
-- general
for i = 1,self.nimages do
local prev = i-1
local next = i+1
local crop_left = 0
local crop_right = 0
local crop_width = 0
local overlap_left = 0
local overlap_right = 0
if prev < 1 then prev = self.nimages end
if next > self.nimages then next = 1 end
if (not wrapped_images[i]) then
if crop_left ~= 0 then
crop_left = crop_right
else
overlap_right = (img_maxw[i] - img_minw[next]) / 2
crop_right = img_maxw[i] - overlap_right
end
overlap_left = (img_maxw[prev] - img_minw[i]) / 2
crop_left = img_minw[i] + overlap_left
crop_width = crop_right - crop_left
print(self.index:size())
print(crop_left,crop_width)
self.index:select(1,1):narrow(2,crop_left,crop_width):fill(i)
self.index:select(1,2):narrow(2,crop_left,crop_width):copy(ipatches[i]:narrow(2,crop_left,crop_width))
else
-- copy two bits (right part)
if (not wrapped_images[prev]) then
overlap_left = (img_maxw[prev] - img_minw[i]) / 2
crop_left = img_minw[i] + overlap_left
crop_right = self.panosize[1]
crop_width = crop_right - crop_left
self.index:select(1,1):narrow(2,crop_left,crop_width):fill(i)
self.index:select(1,2):narrow(2,crop_left,crop_width):copy(ipatches[i]:narrow(2,crop_left,crop_width))
end
-- left part
if (not wrapped_images[next]) then
overlap_right = (img_maxw[i] - img_minw[next]) / 2
crop_left = 1
crop_right = img_maxw[i] - overlap_right
crop_width = crop_right - crop_left
self.index:select(1,1):narrow(2,crop_left,crop_width):fill(i)
self.index:select(1,2):narrow(2,crop_left,crop_width):copy(ipatches[i]:narrow(2,crop_left,crop_width))
end
end
end
end
-- hack to get around the incorrect reverse mapping of multiple images
function Stitcher:fill_holes ()
for y = 2,self.index:size(2) do
for x = 2,self.index:size(3) do
if self.index[2][y][x] == 0 then
if y % 2 == 0 then
self.index:select(3,x):select(2,y):copy(self.index:select(3,x):select(2,y-1))
else
self.index:select(3,x):select(2,y):copy(self.index:select(3,x-1):select(2,y))
end
end
end
end
end
-- need to pass table of images to C function.
function Stitcher:stitch (panorama,frames)
panorama:resize(3,self.panosize[2],self.panosize[1])
panorama.stitch.stitch(panorama,self.index,frames)
end