-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathmetrics.py
108 lines (80 loc) · 3.27 KB
/
metrics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
#-*-coding: utf-8 -*-
'''
Similarities measures
'''
__author__ = 'Marcel Caraciolo <caraciol@gmail.com>'
from math import sqrt
def correlation(size, dot_product, rating_sum, \
rating2sum, rating_norm_squared, rating2_norm_squared):
'''
The correlation between two vectors A, B is
[n * dotProduct(A, B) - sum(A) * sum(B)] /
sqrt{ [n * norm(A)^2 - sum(A)^2] [n * norm(B)^2 - sum(B)^2] }
'''
numerator = size * dot_product - rating_sum * rating2sum
denominator = sqrt(size * rating_norm_squared - rating_sum * rating_sum) * \
sqrt(size * rating2_norm_squared - rating2sum * rating2sum)
return (numerator / (float(denominator))) if denominator else 0.0
def jaccard(users_in_common, total_users1, total_users2):
'''
The Jaccard Similarity between 2 two vectors
|Intersection(A, B)| / |Union(A, B)|
'''
union = total_users1 + total_users2 - users_in_common
return (users_in_common / (float(union))) if union else 0.0
def normalized_correlation(size, dot_product, rating_sum, \
rating2sum, rating_norm_squared, rating2_norm_squared):
'''
The correlation between two vectors A, B is
cov(A, B) / (stdDev(A) * stdDev(B))
The normalization is to give the scale between [0,1].
'''
similarity = correlation(size, dot_product, rating_sum, \
rating2sum, rating_norm_squared, rating2_norm_squared)
return (similarity + 1.0) / 2.0
def cosine(dot_product, rating_norm_squared, rating2_norm_squared):
'''
The cosine between two vectors A, B
dotProduct(A, B) / (norm(A) * norm(B))
'''
numerator = dot_product
denominator = rating_norm_squared * rating2_norm_squared
return (numerator / (float(denominator))) if denominator else 0.0
def regularized_correlation(size, dot_product, rating_sum, \
rating2sum, rating_norm_squared, rating2_norm_squared,
virtual_cont, prior_correlation):
'''
The Regularized Correlation between two vectors A, B
RegularizedCorrelation = w * ActualCorrelation + (1 - w) * PriorCorrelation
where w = # actualPairs / (# actualPairs + # virtualPairs).
'''
unregularizedCorrelation = correlation(size, dot_product, rating_sum, \
rating2sum, rating_norm_squared, rating2_norm_squared)
w = size / float(size + virtual_cont)
return w * unregularizedCorrelation + (1.0 - w) * prior_correlation
def combinations(iterable, r):
"""
Implementation of itertools combinations method. Re-implemented here because
of import issues in Amazon Elastic MapReduce. Was just easier to do this than
bootstrap.
More info here: http://docs.python.org/library/itertools.html#itertools.combinations
Input/Output:
combinations('ABCD', 2) --> AB AC AD BC BD CD
combinations(range(4), 3) --> 012 013 023 123
"""
pool = tuple(iterable)
n = len(pool)
if r > n:
return
indices = range(r)
yield tuple(pool[i] for i in indices)
while True:
for i in reversed(range(r)):
if indices[i] != i + n - r:
break
else:
return
indices[i] += 1
for j in range(i + 1, r):
indices[j] = indices[j - 1] + 1
yield tuple(pool[i] for i in indices)