-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_llama.py
646 lines (545 loc) · 23 KB
/
run_llama.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
# Taken from llama code and lightly modified
# Copyright (c) Meta Platforms, Inc. and affiliates.
# This software may be used and distributed according to the terms of the Llama 2 Community License Agreement.
# Self contained script that can be used to benchmark PyTorch inference speed
import array
import os
import struct
from contextlib import contextmanager
from dataclasses import dataclass
from datetime import datetime
from typing import Any, List, Optional, Tuple
from urllib.request import urlopen
import torch
import torch.nn as nn
from sentencepiece import SentencePieceProcessor
@dataclass
class ModelArgs:
# default hyperparameters for the Llama 7B model
dim: int = 4096
n_layers: int = 32
n_heads: int = 32
vocab_size: int = 32000
hidden_dim: Optional[int] = None
multiple_of: int = 256 # MLP hidden layer size will be multiple of
norm_eps: float = 1e-5
max_seq_len: int = 2048
dropout: float = 0.0
class RMSNorm(nn.Module):
def __init__(self, dim: int, eps: float):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
return output * self.weight
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
t = torch.arange(end, device=freqs.device) # type: ignore
freqs = torch.outer(t, freqs).float() # type: ignore
freqs_cos = torch.cos(freqs) # real part
freqs_sin = torch.sin(freqs) # imaginary part
return freqs_cos, freqs_sin
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
ndim = x.ndim
assert 1 < ndim
assert freqs_cis.shape == (x.shape[1], x.shape[-1])
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis.view(shape)
def apply_rotary_emb(
xq: torch.Tensor, xk: torch.Tensor, freqs_cos: torch.Tensor, freqs_sin: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
# reshape xq and xk to match the complex representation
xq_r, xq_i = xq.float().reshape(xq.shape[:-1] + (-1, 2)).unbind(-1)
xk_r, xk_i = xk.float().reshape(xk.shape[:-1] + (-1, 2)).unbind(-1)
# reshape freqs_cos and freqs_sin for broadcasting
freqs_cos = reshape_for_broadcast(freqs_cos, xq_r)
freqs_sin = reshape_for_broadcast(freqs_sin, xq_r)
# apply rotation using real numbers
xq_out_r = xq_r * freqs_cos - xq_i * freqs_sin
xq_out_i = xq_r * freqs_sin + xq_i * freqs_cos
xk_out_r = xk_r * freqs_cos - xk_i * freqs_sin
xk_out_i = xk_r * freqs_sin + xk_i * freqs_cos
# flatten last two dimensions
xq_out = torch.stack([xq_out_r, xq_out_i], dim=-1).flatten(3)
xk_out = torch.stack([xk_out_r, xk_out_i], dim=-1).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
class KVCache(nn.Module):
def __init__(self, max_batch_size, max_seq_length, n_heads, head_dim):
super().__init__()
cache_shape = (max_batch_size, n_heads, max_seq_length, head_dim)
self.register_buffer("k_cache", torch.zeros(cache_shape))
self.register_buffer("v_cache", torch.zeros(cache_shape))
def update(self, input_pos, k_val, v_val):
# input_pos: [S], k_val: [B, H, S, D]
assert input_pos.shape[0] == k_val.shape[2]
k_out = self.k_cache
v_out = self.v_cache
if input_pos.numel() == 1 and input_pos.item() >= k_out.shape[2]:
self.k_cache = k_out = torch.roll(k_out, 1, 2)
self.v_cache = v_out = torch.roll(v_out, 1, 2)
minus_one = torch.tensor([k_out.shape[2] - 1], device=k_out.device)
k_out[:, :minus_one] = k_val
v_out[:, :minus_one] = v_val
else:
k_out[:, :, input_pos] = k_val
v_out[:, :, input_pos] = v_val
return k_out, v_out
class Attention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
model_parallel_size = 1
self.n_local_heads = args.n_heads // model_parallel_size
self.head_dim = args.dim // args.n_heads
self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False)
self.wk = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False)
self.wv = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False)
self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)
self.kv_cache = None
def forward(
self,
x: torch.Tensor,
freqs_cos: torch.Tensor,
freqs_sin: torch.Tensor,
mask: torch.Tensor,
input_pos: Optional[torch.Tensor],
):
bsz, seqlen, _ = x.shape
# QKV
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, seqlen, self.n_local_heads, self.head_dim)
xv = xv.view(bsz, seqlen, self.n_local_heads, self.head_dim)
# RoPE relative positional embeddings
xq, xk = apply_rotary_emb(xq, xk, freqs_cos, freqs_sin)
# make heads into a batch dimension
xq = xq.transpose(1, 2) # (bs, n_local_heads, seqlen, head_dim)
xk = xk.transpose(1, 2)
xv = xv.transpose(1, 2)
# Update cache
if self.kv_cache is not None and input_pos is not None:
xk, xv = self.kv_cache.update(input_pos, xk, xv)
# flash implementation
output = torch.nn.functional.scaled_dot_product_attention(
xq,
xk,
xv,
attn_mask=mask,
dropout_p=0,
)
# restore time as batch dimension and concat heads
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
# final projection into the residual stream
output = self.wo(output)
return output
class FeedForward(nn.Module):
def __init__(self, dim: int, hidden_dim: int, multiple_of: int):
super().__init__()
if hidden_dim is None:
hidden_dim = 4 * dim
hidden_dim = int(2 * hidden_dim / 3)
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
self.w1 = nn.Linear(dim, hidden_dim, bias=False)
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
def forward(self, x):
return self.w2(nn.functional.silu(self.w1(x)) * self.w3(x))
class TransformerBlock(nn.Module):
def __init__(self, layer_id: int, args: ModelArgs):
super().__init__()
self.n_heads = args.n_heads
self.dim = args.dim
self.head_dim = args.dim // args.n_heads
self.attention = Attention(args)
self.feed_forward = FeedForward(
dim=args.dim,
hidden_dim=args.hidden_dim,
multiple_of=args.multiple_of,
)
self.layer_id = layer_id
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
def forward(self, x, freqs_cos, freqs_sin, mask, input_pos):
h = x + self.attention.forward(
self.attention_norm(x), freqs_cos, freqs_sin, mask, input_pos
)
out = h + self.feed_forward.forward(self.ffn_norm(h))
return out
class Transformer(nn.Module):
def __init__(self, params: ModelArgs):
super().__init__()
self.params = params
self.vocab_size = params.vocab_size
self.n_layers = params.n_layers
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
self.layers = torch.nn.ModuleList()
for layer_id in range(params.n_layers):
self.layers.append(TransformerBlock(layer_id, params))
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
# Initialize caches
freqs_cos, freqs_sin = precompute_freqs_cis(
self.params.dim // self.params.n_heads, self.params.max_seq_len
)
causal_mask = torch.tril(
torch.ones(
self.params.max_seq_len, self.params.max_seq_len, dtype=torch.bool
)
)
for block in self.layers:
block.attention.kv_cache = KVCache(
1,
self.params.max_seq_len,
self.params.n_heads,
self.params.dim // self.params.n_heads,
)
self.register_buffer("causal_mask", causal_mask, persistent=False)
self.register_buffer("freqs_cos", freqs_cos, persistent=False)
self.register_buffer("freqs_sin", freqs_sin, persistent=False)
def forward(
self, tokens: torch.Tensor, input_pos: Optional[torch.Tensor] = None
) -> torch.Tensor:
_bsz, seqlen = tokens.shape
h = self.tok_embeddings(tokens)
if input_pos is not None and input_pos.numel() > 1:
freqs_cos = self.freqs_cos[input_pos]
freqs_sin = self.freqs_sin[input_pos]
mask = self.causal_mask[None, None, input_pos]
elif input_pos is not None:
freqs_cos = self.freqs_cos[input_pos % self.params.max_seq_len]
freqs_sin = self.freqs_sin[input_pos % self.params.max_seq_len]
mask = self.causal_mask[
None,
None,
input_pos
if input_pos.item() < self.params.max_seq_len
else torch.tensor([-1]),
]
else:
freqs_cos = self.freqs_cos[:seqlen]
freqs_sin = self.freqs_sin[:seqlen]
mask = self.causal_mask[None, None, :seqlen, :seqlen]
for layer in self.layers:
h = layer(h, freqs_cos, freqs_sin, mask, input_pos)
h = self.norm(h)
# inference-time mini-optimization: only forward the output on the very last position
logits = self.output(
h[:, [-1], :]
) # note: using list [-1] to preserve the time dim
return logits
@torch.inference_mode()
def generate(self, idx, temperature=1.0, top_k=None):
def logits_to_idx(logits):
logits = logits[:, -1, :] # crop to just the final time step
if temperature == 0.0:
# "sample" the single most likely index
_, idx_next = torch.topk(logits, k=1, dim=-1)
return idx_next
# pluck the logits at the final step and scale by desired temperature
logits = logits / temperature
# optionally crop the logits to only the top k options
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float("Inf")
# apply softmax to convert logits to (normalized) probabilities
probs = nn.functional.softmax(logits, dim=-1)
return torch.multinomial(probs, num_samples=1)
# Initialize cache state
logits = self(idx, input_pos=torch.arange(0, idx.size(1)))
idx_next = logits_to_idx(logits)
yield idx_next.item()
input_pos = torch.tensor(
[
idx.size(1),
]
)
while True:
# forward the model to get the logits for the index in the sequence
logits = self(idx_next, input_pos=input_pos)
idx_next = logits_to_idx(logits)
yield idx_next.item()
input_pos += 1
class Tokenizer:
def __init__(self, model_path=None):
assert os.path.isfile(model_path), model_path
self.sp_model = SentencePieceProcessor(model_file=model_path)
self.model_path = model_path
# BOS / EOS token IDs
self.n_words: int = self.sp_model.vocab_size()
self.bos_id: int = self.sp_model.bos_id()
self.eos_id: int = self.sp_model.eos_id()
self.pad_id: int = self.sp_model.pad_id()
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size()
def encode(self, s: str, bos: bool, eos: bool) -> List[int]:
assert isinstance(s, str)
t = self.sp_model.encode(s)
if bos:
t = [self.bos_id] + t
if eos:
t = t + [self.eos_id]
return t
def decode(self, t: List[int]) -> str:
return self.sp_model.decode(t)
def decode_id(self, t: int) -> str:
if t == self.bos_id:
return "\n\n"
rc = self.sp_model.IdToPiece(t)
# Sentencepiece uses Lower One Eighth Block (U+2581) as whitespace
return rc.replace("\u2581", " ") if rc != "<0x0A>" else "\n"
def download_url(url: str) -> None:
fname = os.path.basename(url)
if os.path.exists(fname):
return
with urlopen(url) as s, open(fname, "wb") as f:
f.write(s.read())
def get_file_size(name: str) -> int:
with open(name, "rb") as f:
return f.seek(0, 2)
def untyped_storage_from_file(name: str) -> torch.storage.UntypedStorage:
return torch.storage.UntypedStorage.from_file(name, False, get_file_size(name))
def tensor_from_storage(storage, dtype, offs, shape, strides=None) -> torch.Tensor:
rc = torch.tensor([], dtype=dtype)
if strides is None:
strides = []
prev = 1
for s in reversed(shape):
strides.insert(0, prev)
prev *= s
rc.set_(storage, offs, shape, strides)
return rc
class SerializedReader:
def __init__(self, storage) -> None:
self.storage = storage
self.offs = 0
def _read_bytes(self, byte_length: int) -> bytes:
data = bytes(
array.array("B", self.storage[self.offs : self.offs + byte_length])
)
self.offs += byte_length
return data
def _read_int(self, byte_length: int, unsigned: bool) -> int:
fmt = "i" if byte_length == 4 else "l"
if unsigned:
fmt = fmt.upper()
return struct.unpack(fmt, self._read_bytes(byte_length))[0]
def read_int32(self) -> int:
return self._read_int(4, False)
def read_int64(self) -> int:
return self._read_int(8, False)
def read_float32(self) -> float:
return struct.unpack("f", self._read_bytes(4))[0]
def read_pascal_string(self) -> str:
strlen = self.read_int64()
rc = self._read_bytes(strlen)
return rc.decode("utf-8")
def read_typed_value(self, val_type: Optional[int] = None) -> Any:
if val_type is None:
val_type = self.read_int32()
if val_type == 9: # GGUFValueType.ARRAY:
elem_type = self.read_int32()
array_len = self.read_int64()
rc = []
for _ in range(array_len):
rc.append(self.read_typed_value(elem_type))
return rc
elif val_type == 8: # GGUFValueType.STRING:
return self.read_pascal_string()
elif val_type == 5: # GGUFValueType.INT32:
return self.read_int32()
elif val_type == 4: # GGUFValueType.UINT32:
return self._read_int(4, True)
elif val_type == 6: # GGUFValueType.FLOAT32:
return self.read_float32()
raise RuntimeError(f"Unknown type {val_type}")
class GGUFReader:
def __init__(self, filename) -> None:
self.storage = storage = untyped_storage_from_file(filename)
self.stream = stream = SerializedReader(storage)
self.props = {}
self.tensors = {}
magic = stream.read_int32()
if magic != 0x46554747:
raise RuntimeError(f"Unexpected magic number {magic}")
version = stream.read_int32()
if version not in [3]:
raise RuntimeError(f"Unsupported version {version}")
self.tensor_count = stream.read_int64()
self.kv_count = stream.read_int64()
for i in range(self.kv_count):
key = stream.read_pascal_string()
value = stream.read_typed_value()
self.props[key] = value
tensor_meta = []
for i in range(self.tensor_count):
key = stream.read_pascal_string()
ndim = stream.read_int32()
dims = list(reversed([stream.read_int64() for _ in range(ndim)]))
tensor_dtype = stream.read_int32()
tensor_offs = stream.read_int64()
tensor_meta.append((key, dims, tensor_dtype, tensor_offs))
self.alignment = self.props.get("general.alignment", 32)
if (padding := stream.offs % self.alignment) != 0:
stream.offs += self.alignment - padding
for key, shape, raw_dtype, offs in tensor_meta:
offs = offs + stream.offs
if raw_dtype == 0:
self.tensors[key] = tensor_from_storage(
storage, torch.float32, offs // 4, shape
)
elif raw_dtype == 1:
self.tensors[key] = tensor_from_storage(
storage, torch.float16, offs // 2, shape
)
else:
raise RuntimeError(f"Unknown tensor type {raw_dtype}")
@contextmanager
def default_dtype(dtype=None):
orig_dtype = torch.get_default_dtype()
try:
if dtype is not None:
torch.set_default_dtype(dtype)
yield
finally:
torch.set_default_dtype(orig_dtype)
def model_from_gguf(model_path: str) -> nn.Module:
gguf = GGUFReader(model_path)
model_arch = gguf.props["general.architecture"]
if model_arch != "llama":
raise RuntimeError(f"Unsupported model architecutre {model_arch}")
llama_args = ModelArgs(
dim=gguf.props["llama.embedding_length"],
n_heads=gguf.props["llama.attention.head_count"],
n_layers=gguf.props["llama.block_count"],
max_seq_len=gguf.props["llama.context_length"],
)
def gguf_to_model_name(name: str) -> str:
if name == "token_embd.weight":
return "tok_embeddings.weight"
if name == "output_norm.weight":
return "norm.weight"
if name.startswith("blk."):
blk, idx, suffix, weight = name.split(".")
suffix = {
"attn_q": "attention.wq",
"attn_k": "attention.wk",
"attn_v": "attention.wv",
"attn_output": "attention.wo",
"attn_norm": "attention_norm",
"ffn_up": "feed_forward.w1",
"ffn_down": "feed_forward.w2",
"ffn_gate": "feed_forward.w3",
"ffn_norm": "ffn_norm",
}[suffix]
return f"layers.{idx}.{suffix}.weight"
return name
state_dict = {gguf_to_model_name(k): v for (k, v) in gguf.tensors.items()}
return llama_args, state_dict
def model_from_pth(model_path: str) -> nn.Module:
checkpoint_dict = torch.load(
model_path, map_location="cpu", weights_only=True, mmap=True
)
if "model_args" in checkpoint_dict:
model_args = checkpoint_dict["model_args"]
if "n_kv_heads" in model_args:
assert model_args["n_heads"] == model_args["n_kv_heads"]
del model_args["n_kv_heads"]
gptconf = ModelArgs(**model_args)
state_dict = checkpoint_dict["model"]
else:
gptconf = ModelArgs()
state_dict = checkpoint_dict
unwanted_prefix = "_orig_mod."
for k, v in list(state_dict.items()):
if k.startswith(unwanted_prefix):
state_dict[k[len(unwanted_prefix) :]] = state_dict.pop(k)
return gptconf, state_dict
def load_model(
model_path: str, device: str, dtype: Optional[torch.dtype] = None
) -> nn.Module:
start_time = datetime.now()
with default_dtype(dtype), torch.device(device):
if model_path.endswith(".gguf"):
conf, state_dict = model_from_gguf(model_path)
else:
conf, state_dict = model_from_pth(model_path)
model = Transformer(conf)
model.load_state_dict(state_dict, strict=False)
duration = (datetime.now() - start_time).total_seconds()
print(f"Loaded {model_path} in {duration:.2f} seconds")
return model
def run_inference(
model_path: str = "stories15M.pt",
tokenizer_path: str = "tokenizer.model",
prompt: str = "Once upon a time",
device: str = "cpu",
dtype: Optional[str] = None,
seqlen: int = 512,
) -> None:
model = load_model(
model_path, device, getattr(torch, dtype) if dtype is not None else None
)
tokenizer = Tokenizer(tokenizer_path)
tokens = tokenizer.encode(prompt, bos=False, eos=False)
x = torch.tensor(tokens, device=device).reshape(1, -1)
print(prompt, end="", flush=True)
start_time = datetime.now()
for idx, tok in enumerate(model.generate(x)):
if idx > seqlen:
print("", flush=True)
break
print(tokenizer.decode_id(tok), end="", flush=True)
duration = (datetime.now() - start_time).total_seconds()
print(f"Speed is {seqlen/duration:.2f} tokens per second")
def benchmark(
model_path: str = "stories15M.pt",
device: str = "cpu",
dtype: Optional[str] = None,
) -> None:
model = load_model(model_path, device)
if dtype is not None:
model.to(dtype=getattr(torch, dtype))
x = torch.randint(3, 512, (1, model.params.max_seq_len), device=device)
with torch.profiler.profile(
activities=[torch.profiler.ProfilerActivity.CPU], record_shapes=True
) as prof:
for idx, tok in enumerate(model.generate(x)):
break
print(prof.key_averages(group_by_input_shape=True).table(sort_by="cpu_time_total"))
def parse_args():
from argparse import ArgumentParser
parser = ArgumentParser("Simple LLM text generator")
parser.add_argument("--device", type=str, default="cpu")
parser.add_argument("--model-path", type=str, default="stories15M.pt")
parser.add_argument("--random-seed", type=int, default=None)
parser.add_argument("--prompt", type=str, default="Once upon a time")
parser.add_argument("--seq-len", type=int, default=512)
parser.add_argument("--dtype", type=str, default=None)
parser.add_argument("--benchmark", action="store_true")
# Do not attempt to parse CLI arguments if running inside notebook
return parser.parse_args([] if hasattr(__builtins__, "__IPYTHON__") else None)
if __name__ == "__main__":
args = parse_args()
if args.random_seed is not None:
torch.manual_seed(args.random_seed)
download_url("/~https://github.com/karpathy/llama2.c/raw/master/tokenizer.model")
download_url(
"https://huggingface.co/karpathy/tinyllamas/resolve/main/stories15M.pt"
)
# Attempt to use reduced precision computations when possible
if hasattr(torch._C, "_set_cpu_allow_fp16_reduced_precision_reduction"):
try:
torch._C._set_cpu_allow_fp16_reduced_precision_reduction(True)
except RuntimeError:
print("Failed to set reduced precision computations")
if args.benchmark:
benchmark(device=args.device, dtype=args.dtype, model_path=args.model_path)
else:
run_inference(
device=args.device,
dtype=args.dtype,
model_path=args.model_path,
prompt=args.prompt,
seqlen=args.seq_len,
)