-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathtrain_mdn.py
350 lines (282 loc) · 11.7 KB
/
train_mdn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
# Copyright 2021 The Magenta Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Train Transformer-based continuous language model."""
import os
import time
from absl import app
from absl import flags
from absl import logging
from functools import partial
import jax
import jax.numpy as jnp
import jax.experimental.optimizers
import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds
from flax import nn
from flax import optim
from flax.metrics import tensorboard
from flax.training import checkpoints
from flax.training import lr_schedule
import input_pipeline
import utils.train_utils as train_utils
import utils.data_utils as data_utils
import models.autoregressive as ar
from utils.losses import reduce_fn
from tensorflow_probability.substrates import jax as tfp
tfd = tfp.distributions
FLAGS = flags.FLAGS
flags.DEFINE_integer('seed', 0, 'Random seed for network initialization.')
# Training
flags.DEFINE_float('learning_rate', 3e-4, 'Learning rate for optimizer.')
flags.DEFINE_integer('batch_size', 128, 'Batch size for training.')
flags.DEFINE_integer('epochs', 1000, 'Number of training epochs.')
flags.DEFINE_integer('max_steps', 100000, 'Maximum number of training steps.')
# Training stability
flags.DEFINE_boolean('early_stopping', False,
'Use early stopping to prevent overfitting.')
flags.DEFINE_float('grad_clip', 1., 'Max gradient norm for training.')
flags.DEFINE_float('lr_gamma', 0.98, 'Gamma for learning rate scheduler.')
flags.DEFINE_integer('lr_schedule_interval', 4000,
'Number of steps between LR changes.')
flags.DEFINE_float('lr_warmup', 0, 'Learning rate warmup (epochs).')
# Model
flags.DEFINE_string('architecture', 'TransformerMDN',
'Class name of model architecture.')
flags.DEFINE_integer('mdn_components', 100, 'Number of mixtures.')
flags.DEFINE_integer('num_heads', 8, 'Number of attention heads.')
flags.DEFINE_integer('num_layers', 6, 'Number of encoder layers.')
flags.DEFINE_integer('num_mlp_layers', 2, 'Number of output MLP layers.')
flags.DEFINE_integer('mlp_dims', 2048, 'Number of channels per MLP layer.')
# Data
flags.DEFINE_list('data_shape', [32, 512], 'Shape of data.')
flags.DEFINE_string(
'dataset', './output/mel-32step-512',
'Path to directory containing data as train/eval tfrecord files.')
flags.DEFINE_string('pca_ckpt', '', 'PCA transform.')
flags.DEFINE_string('slice_ckpt', '', 'Slice transform.')
flags.DEFINE_string('dim_weights_ckpt', '', 'Dimension scale transform.')
flags.DEFINE_boolean('normalize', True, 'Normalize dataset to [-1, 1].')
# Logging, checkpointing, and evaluation
flags.DEFINE_integer('logging_freq', 100, 'Logging frequency.')
flags.DEFINE_integer('snapshot_freq', 5000,
'Evaluation and checkpoint frequency.')
flags.DEFINE_boolean('snapshot_sampling', True,
'Sample from score network during evaluation.')
flags.DEFINE_integer('eval_samples', 3000, 'Number of samples to generate.')
flags.DEFINE_integer('checkpoints_to_keep', 50,
'Number of checkpoints to keep.')
flags.DEFINE_boolean('save_ckpt', True,
'Save model checkpoints at each evaluation step.')
flags.DEFINE_string('model_dir', './save/mdn', 'Directory to store model data.')
flags.DEFINE_boolean('verbose', True, 'Toggle logging to stdout.')
def mdn_loss(pi, mu, log_sigma, x, reduction='mean'):
"""Mixture density loss.
Args:
pi: Unnormalized component mixture distribution.
mu: Mean vectors.
log_sigma: Log standard deviation vectors.
reduction: Type of reduction to apply to loss.
Returns:
Loss value. If `reduction` is `none`, this has the same shape as `data`;
otherwise, it is scalar.
"""
channels = x.shape[-1]
mdn_k = pi.shape[-1]
out_pi = pi.reshape(-1, mdn_k)
out_mu = mu.reshape(-1, channels * mdn_k)
out_log_sigma = log_sigma.reshape(-1, channels * mdn_k)
# Create mixture distribution
mix_dist = tfd.Categorical(logits=out_pi)
# Create component distribution
mus = out_mu.reshape(-1, mdn_k, channels)
log_sigmas = out_log_sigma.reshape(-1, mdn_k, channels)
sigmas = jnp.exp(log_sigmas)
component_dist = tfd.MultivariateNormalDiag(loc=mus, scale_diag=sigmas)
# Compute loss
mixture = tfd.MixtureSameFamily(mixture_distribution=mix_dist,
components_distribution=component_dist)
x = x.reshape(-1, channels)
loss = -1 * mixture.log_prob(x)
return reduce_fn(loss, reduction)
def create_optimizer(model, learning_rate):
optimizer_def = optim.Adam(learning_rate=learning_rate)
optimizer = optimizer_def.create(model)
return optimizer
def create_model(rng, input_shape, model_kwargs, batch_size=32, verbose=False):
clazz = getattr(ar, FLAGS.architecture)
module = clazz.partial(**model_kwargs)
output, initial_params = module.init_by_shape(
rng, [((batch_size, *input_shape), jnp.float32)])
model = nn.Model(module, initial_params)
if verbose:
train_utils.report_model(model)
return model
@jax.jit
def eval_step(batch, model):
"""A single evaluation step.
Args:
batch: A batch of inputs.
model: The model to be used for this evaluation step.
Returns:
loss: The summed loss on this batch.
examples: Number of examples in this batch.
"""
pi, mu, log_sigma = model(batch)
loss = mdn_loss(pi, mu, log_sigma, batch, 'none')
return loss.sum(), loss.shape[0]
def evaluate(dataset, model):
"""Evaluates the model on a dataset.
Args:
dataset: A dataset to be used for the evaluation. Typically valid or test.
model: A model to be evaluated.
Returns:
A dict with the evaluation results.
"""
count = 0
total_loss = 0.
for inputs in tfds.as_numpy(dataset):
loss, examples = eval_step(inputs, model)
count += examples
total_loss += loss.item()
loss = total_loss / count
metrics = {'loss': loss}
return metrics
@jax.jit
def train_step(batch, optimizer, learning_rate):
"""Single optimized training step.
Args:
batch: A batch of inputs.
optimizer: The optimizer to use to update the weights.
learning_rate: Current learning rate.
Returns:
optimizer: The optimizer in its new state.
train_metrics: A dict with training statistics for the step.
"""
def loss_fn(model):
pi, mu, log_sigma = model(batch)
loss = mdn_loss(pi, mu, log_sigma, batch, 'mean')
train_metrics = {'loss': loss}
return loss, train_metrics
grad_fn = jax.value_and_grad(loss_fn, has_aux=True)
(loss, train_metrics), grad = grad_fn(optimizer.target)
grad = jax.experimental.optimizers.clip_grads(grad, FLAGS.grad_clip)
train_metrics['grad'] = jax.experimental.optimizers.l2_norm(grad)
train_metrics['lr'] = learning_rate
optimizer = optimizer.apply_gradient(grad, learning_rate=learning_rate)
return optimizer, train_metrics
def train(train_batches, valid_batches, output_dir=None, verbose=True):
"""Training loop.
Args:
train_batches: Training batches from tf.data.Dataset.
valid_batches: Validation batches from tf.data.Dataset.
output_dir: Output directory for checkpoints, logs, and samples.
verbose: Logging verbosity.
Returns:
An optimizer object with final state.
"""
train_writer = tensorboard.SummaryWriter(os.path.join(output_dir, 'train'))
eval_writer = tensorboard.SummaryWriter(os.path.join(output_dir, 'eval'))
tfds_batch = valid_batches.take(1)
tfds_batch = list(valid_batches.as_numpy_iterator())[0]
batch_size, *input_shape = tfds_batch.shape
rng = jax.random.PRNGKey(FLAGS.seed)
rng, model_rng = jax.random.split(rng)
lm_kwargs = {
'num_layers': FLAGS.num_layers,
'num_heads': FLAGS.num_heads,
'mdn_mixtures': FLAGS.mdn_components,
'num_mlp_layers': FLAGS.num_mlp_layers,
'mlp_dims': FLAGS.mlp_dims
}
model = create_model(model_rng,
input_shape,
lm_kwargs,
batch_size,
verbose=verbose)
optimizer = create_optimizer(model, FLAGS.learning_rate)
early_stop = train_utils.EarlyStopping(patience=1)
# Learning rate schedule
lr_step_schedule = [(i, FLAGS.lr_gamma**i) for i in range(1000)]
lr_scheduler = lr_schedule.create_stepped_learning_rate_schedule(
FLAGS.learning_rate,
FLAGS.lr_schedule_interval,
lr_step_schedule,
warmup_length=FLAGS.lr_warmup)
sampling_step = -1
for epoch in range(FLAGS.epochs):
start_time = time.time()
for step, batch in enumerate(tfds.as_numpy(train_batches)):
global_step = step + epoch * train_batches.examples
optimizer, train_metrics = train_step(batch, optimizer,
lr_scheduler(global_step))
if step % FLAGS.logging_freq == 0:
elapsed = time.time() - start_time
batch_per_sec = (step + 1) / elapsed
ms_per_batch = elapsed * 1000 / (step + 1)
train_metrics['batch/s'] = batch_per_sec
train_metrics['ms/batch'] = ms_per_batch
train_utils.log_metrics(train_metrics,
step,
train_batches.examples,
epoch=epoch,
summary_writer=train_writer,
verbose=verbose)
if (step % FLAGS.snapshot_freq == 0 and
step > 0) or step == train_batches.examples - 1:
sampling_step += 1
eval_metrics = evaluate(valid_batches, optimizer.target)
train_utils.log_metrics(eval_metrics,
global_step,
train_batches.examples * FLAGS.epochs,
summary_writer=eval_writer,
verbose=verbose)
improved, early_stop = early_stop.update(eval_metrics['loss'])
if (not FLAGS.early_stopping and FLAGS.save_ckpt) or \
(FLAGS.early_stopping and improved and FLAGS.save_ckpt):
checkpoints.save_checkpoint(output_dir, (optimizer, early_stop),
sampling_step,
keep=FLAGS.checkpoints_to_keep)
if FLAGS.early_stopping and early_stop.should_stop:
logging.info('EARLY STOP: Ended training after %s epochs.', epoch + 1)
return
train_writer.flush()
eval_writer.flush()
# Early termination of training loop.
if FLAGS.max_steps is not None and \
global_step >= FLAGS.max_steps:
return optimizer
return optimizer
def main(argv):
del argv # unused
logging.info(FLAGS.flags_into_string())
logging.info('Platform: %s', jax.lib.xla_bridge.get_backend().platform)
# Make sure TensorFlow does not allocate GPU memory.
tf.config.experimental.set_visible_devices([], 'GPU')
train_ds, eval_ds = input_pipeline.get_dataset(
dataset=FLAGS.dataset,
data_shape=FLAGS.data_shape,
problem='vae',
batch_size=FLAGS.batch_size,
normalize=FLAGS.normalize,
pca_ckpt=FLAGS.pca_ckpt,
slice_ckpt=FLAGS.slice_ckpt,
dim_weights_ckpt=FLAGS.dim_weights_ckpt)
train(train_batches=train_ds,
valid_batches=eval_ds,
output_dir=FLAGS.model_dir,
verbose=FLAGS.verbose)
if __name__ == '__main__':
app.run(main)