-
Notifications
You must be signed in to change notification settings - Fork 32
/
Copy pathinput_pipeline.py
235 lines (199 loc) · 7.39 KB
/
input_pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# Copyright 2021 The Magenta Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
"""Input data pipeline."""
import os
import time
import numpy as np
import tensorflow as tf
import tensorflow_datasets as tfds
from absl import logging
from functools import partial
import utils.data_utils as data_utils
AUTOTUNE = tf.data.experimental.AUTOTUNE
def deconstruct_dict(batch_dict, problem):
key = 'image' if problem == 'mnist' else 'inputs'
return batch_dict[key]
def normalize_dataset(batch, data_min, data_max):
"""Normalize dataset to range [-1, 1]."""
batch = (batch - data_min) / (data_max - data_min)
batch = 2. * batch - 1.
return batch
def slice_transform(batch, problem='vae', slice_idx=None, dim_weights=None):
if dim_weights is not None:
batch = batch * dim_weights
if slice_idx is not None:
batch = tf.gather(batch, slice_idx, axis=-1)
return batch
def data_transform(batch, problem='vae', pca=None):
"""Data transform.
Args:
batch: A batch of data samples.
pca: PCA transform object.
Returns:
Transformed batch array.
"""
if problem == 'mnist':
batch = tf.reshape(batch, (batch.shape[0], -1))
batch = tf.cast(batch, tf.float32) / 255.
batch = 2. * batch - 1.
if pca is not None:
if batch.ndim > 2:
init_shape = batch.shape
batch = batch.reshape(batch.shape[0], -1)
batch = pca.transform(batch)
batch = batch.reshape(*init_shape)
else:
batch = pca.transform(batch)
return batch
def inverse_data_transform(batch,
normalize=True,
pca=None,
data_min=0.,
data_max=1.,
slice_idx=None,
dim_weights=None,
out_channels=512):
"""Inverse data transform.
Args:
batch: Transformed batch array.
pca: PCA transform object.
Returns:
Original batch array.
"""
if normalize:
batch = (batch + 1.) / 2.
batch = (data_max - data_min) * batch + data_min
if pca is not None:
batch = pca.inverse_transform(batch)
if slice_idx is not None:
transformed = np.random.randn(*batch.shape[:-1], out_channels)
transformed[..., slice_idx] = batch
batch = transformed
if dim_weights is not None:
batch = batch / dim_weights
return batch
def get_dataset(dataset='',
data_shape=(2,),
problem='vae',
batch_size=128,
normalize=True,
pca_ckpt='',
slice_ckpt='',
dim_weights_ckpt='',
include_cardinality=True):
if problem == 'mnist':
train_ds = tfds.load('mnist', split='train', shuffle_files=True)
eval_ds = tfds.load('mnist', split='test', shuffle_files=True)
elif problem in ['vae', 'toy', 'tokens']:
shape = tuple(map(int, data_shape))
tokens = problem == 'tokens'
train_ds = data_utils.get_tf_record_dataset(
file_pattern=f'{dataset}/train-*.tfrecord',
shape=shape,
batch_size=batch_size,
shuffle=True,
tokens=tokens)
eval_ds = data_utils.get_tf_record_dataset(
file_pattern=f'{dataset}/eval-*.tfrecord',
shape=shape,
batch_size=batch_size,
shuffle=True,
tokens=tokens)
else:
raise ValueError(f'Unknown problem type: {problem}')
# Dataset loading and transformation (PCA, Slice).
pca = data_utils.load(os.path.expanduser(pca_ckpt)) if pca_ckpt else None
slice_idx = data_utils.load(
os.path.expanduser(slice_ckpt)) if slice_ckpt else None
dim_weights = data_utils.load(
os.path.expanduser(dim_weights_ckpt)) if dim_weights_ckpt else None
# Batch.
train_ds = train_ds.batch(batch_size, drop_remainder=True)
eval_ds = eval_ds.batch(batch_size, drop_remainder=True)
train_ds = train_ds.map(partial(deconstruct_dict, problem=problem),
num_parallel_calls=AUTOTUNE)
eval_ds = eval_ds.map(partial(deconstruct_dict, problem=problem),
num_parallel_calls=AUTOTUNE)
# PCA transform
if problem != 'tokens':
train_ds = train_ds.map(lambda example: tf.py_function(
partial(data_transform, problem=problem, pca=pca), [example], tf.float32
),
num_parallel_calls=AUTOTUNE)
eval_ds = eval_ds.map(lambda example: tf.py_function(
partial(data_transform, problem=problem, pca=pca), [example], tf.float32
),
num_parallel_calls=AUTOTUNE)
# Slice + weight transform
train_ds = train_ds.map(partial(slice_transform,
problem=problem,
slice_idx=slice_idx,
dim_weights=dim_weights),
num_parallel_calls=AUTOTUNE)
eval_ds = eval_ds.map(partial(slice_transform,
problem=problem,
slice_idx=slice_idx,
dim_weights=dim_weights),
num_parallel_calls=AUTOTUNE)
# Dataset normalization.
train_min, train_max = 0., 1.
eval_min, eval_max = 0., 1.
if normalize:
logging.info('Normalizing dataset to have range [-1, 1].')
config_name = pca_ckpt.split('/')[-1].split('.')[0]
config_name += slice_ckpt.split('/')[-1].split('.')[0]
config_name += dim_weights_ckpt.split('/')[-1].split('.')[0]
train_min, train_max = data_utils.compute_dataset_min_max(
train_ds,
ds_split='train',
cache=True,
cache_dir=os.path.expanduser(dataset),
config=config_name)
eval_min, eval_max = data_utils.compute_dataset_min_max(
eval_ds,
ds_split='eval',
cache=True,
cache_dir=os.path.expanduser(dataset),
config=config_name)
train_ds = train_ds.map(lambda example: normalize_dataset(
example, train_min, train_max),
num_parallel_calls=AUTOTUNE)
eval_ds = eval_ds.map(lambda example: normalize_dataset(
example, eval_min, eval_max),
num_parallel_calls=AUTOTUNE)
train_ds = train_ds.prefetch(AUTOTUNE)
eval_ds = eval_ds.prefetch(AUTOTUNE)
eval_ds = eval_ds.cache()
setattr(train_ds, 'min', train_min)
setattr(train_ds, 'max', train_max)
setattr(eval_ds, 'min', eval_min)
setattr(eval_ds, 'max', eval_max)
if include_cardinality:
t0 = time.time()
config_name = str(batch_size)
data_utils.compute_dataset_cardinality(
train_ds,
ds_split='train',
cache=True,
cache_dir=os.path.expanduser(dataset),
config=config_name)
data_utils.compute_dataset_cardinality(
eval_ds,
ds_split='eval',
cache=True,
cache_dir=os.path.expanduser(dataset),
config=config_name)
logging.info('Computed dataset cardinality in %f seconds', time.time() - t0)
return train_ds, eval_ds