-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathaes.c
921 lines (773 loc) · 27.6 KB
/
aes.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
/*-------------------------------------------------------------------------------
* aes.c Tinier AES
* Easy To Use (and configurable) AES Output and Utility Bit/Byte Functions
*
* Modified Tiny AES code for more variable nk/nr/nb values, all in one file
* /~https://github.com/kokke/tiny-AES-c
*-----------------------------------------------------------------------------*/
/*
This is free and unencumbered software released into the public domain.
Anyone is free to copy, modify, publish, use, compile, sell, or
distribute this software, either in source code form or as a compiled
binary, for any purpose, commercial or non-commercial, and by any
means.
In jurisdictions that recognize copyright laws, the author or authors
of this software dedicate any and all copyright interest in the
software to the public domain. We make this dedication for the benefit
of the public at large and to the detriment of our heirs and
successors. We intend this dedication to be an overt act of
relinquishment in perpetuity of all present and future rights to this
software under copyright law.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.
For more information, please refer to <http://unlicense.org/>
*/
#include <string.h>
#include <stdint.h>
#include <stddef.h>
#include "aes.h"
#define AES_BLOCKLEN 16
unsigned Nb = 4;
unsigned Nk = 8;
unsigned Nr = 14;
struct AES_ctx
{
uint8_t RoundKey[240];
uint8_t Iv[16];
};
//internal function prototypes
void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key);
void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key, const uint8_t* iv);
void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv);
void AES_ECB_encrypt(const struct AES_ctx* ctx, uint8_t* buf);
void AES_ECB_decrypt(const struct AES_ctx* ctx, uint8_t* buf);
void AES_CBC_encrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length);
void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length);
void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length);
typedef uint8_t state_t[4][4];
static const uint8_t sbox[256] = {
//0 1 2 3 4 5 6 7 8 9 A B C D E F
0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76,
0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0,
0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15,
0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75,
0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84,
0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf,
0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8,
0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2,
0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73,
0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb,
0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79,
0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08,
0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a,
0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e,
0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf,
0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16 };
static const uint8_t rsbox[256] = {
0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb,
0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb,
0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e,
0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25,
0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92,
0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84,
0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06,
0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b,
0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73,
0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e,
0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b,
0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4,
0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f,
0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef,
0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61,
0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d };
static const uint8_t Rcon[11] = {
0x8d, 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x1b, 0x36 };
#define getSBoxValue(num) (sbox[(num)])
static void KeyExpansion(uint8_t* RoundKey, const uint8_t* Key)
{
unsigned i, j, k;
uint8_t tempa[4]; // Used for the column/row operations
// The first round key is the key itself.
for (i = 0; i < Nk; ++i)
{
RoundKey[(i * 4) + 0] = Key[(i * 4) + 0];
RoundKey[(i * 4) + 1] = Key[(i * 4) + 1];
RoundKey[(i * 4) + 2] = Key[(i * 4) + 2];
RoundKey[(i * 4) + 3] = Key[(i * 4) + 3];
}
// All other round keys are found from the previous round keys.
for (i = Nk; i < Nb * (Nr + 1); ++i)
{
{
k = (i - 1) * 4;
tempa[0]=RoundKey[k + 0];
tempa[1]=RoundKey[k + 1];
tempa[2]=RoundKey[k + 2];
tempa[3]=RoundKey[k + 3];
}
if (i % Nk == 0)
{
// This function shifts the 4 bytes in a word to the left once.
// [a0,a1,a2,a3] becomes [a1,a2,a3,a0]
// Function RotWord()
{
const uint8_t u8tmp = tempa[0];
tempa[0] = tempa[1];
tempa[1] = tempa[2];
tempa[2] = tempa[3];
tempa[3] = u8tmp;
}
// SubWord() is a function that takes a four-byte input word and
// applies the S-box to each of the four bytes to produce an output word.
// Function Subword()
{
tempa[0] = getSBoxValue(tempa[0]);
tempa[1] = getSBoxValue(tempa[1]);
tempa[2] = getSBoxValue(tempa[2]);
tempa[3] = getSBoxValue(tempa[3]);
}
tempa[0] = tempa[0] ^ Rcon[i/Nk];
}
if (Nk == 8) //only run if using AES256 (Nk == 8)
{
if (i % Nk == 4)
{
// Function Subword()
{
tempa[0] = getSBoxValue(tempa[0]);
tempa[1] = getSBoxValue(tempa[1]);
tempa[2] = getSBoxValue(tempa[2]);
tempa[3] = getSBoxValue(tempa[3]);
}
}
}
j = i * 4; k=(i - Nk) * 4;
RoundKey[j + 0] = RoundKey[k + 0] ^ tempa[0];
RoundKey[j + 1] = RoundKey[k + 1] ^ tempa[1];
RoundKey[j + 2] = RoundKey[k + 2] ^ tempa[2];
RoundKey[j + 3] = RoundKey[k + 3] ^ tempa[3];
}
}
//input bit array, return output as up to a 64-bit value
uint64_t convert_bits_into_output(uint8_t * input, int len)
{
int i;
uint64_t output = 0;
for(i = 0; i < len; i++)
{
output <<= 1;
output |= (uint64_t)(input[i] & 1);
}
return output;
}
//take x amount of bits and pack into len amount of bytes (symmetrical)
void pack_bit_array_into_byte_array (uint8_t * input, uint8_t * output, int len)
{
int i;
for (i = 0; i < len; i++)
output[i] = (uint8_t)convert_bits_into_output(&input[i*8], 8);
}
//take len amount of bytes and unpack back into a bit array
void unpack_byte_array_into_bit_array (uint8_t * input, uint8_t * output, int len)
{
int i = 0, k = 0;
for (i = 0; i < len; i++)
{
output[k++] = (input[i] >> 7) & 1;
output[k++] = (input[i] >> 6) & 1;
output[k++] = (input[i] >> 5) & 1;
output[k++] = (input[i] >> 4) & 1;
output[k++] = (input[i] >> 3) & 1;
output[k++] = (input[i] >> 2) & 1;
output[k++] = (input[i] >> 1) & 1;
output[k++] = (input[i] >> 0) & 1;
}
}
void AES_init_ctx(struct AES_ctx* ctx, const uint8_t* key)
{
KeyExpansion(ctx->RoundKey, key);
}
void AES_init_ctx_iv(struct AES_ctx* ctx, const uint8_t* key, const uint8_t* iv)
{
KeyExpansion(ctx->RoundKey, key);
memcpy (ctx->Iv, iv, AES_BLOCKLEN);
}
void AES_ctx_set_iv(struct AES_ctx* ctx, const uint8_t* iv)
{
memcpy (ctx->Iv, iv, AES_BLOCKLEN);
}
static void AddRoundKey(uint8_t round, state_t* state, const uint8_t* RoundKey)
{
uint8_t i,j;
for (i = 0; i < 4; ++i)
{
for (j = 0; j < 4; ++j)
{
(*state)[i][j] ^= RoundKey[(round * Nb * 4) + (i * Nb) + j];
}
}
}
static void SubBytes(state_t* state)
{
uint8_t i, j;
for (i = 0; i < 4; ++i)
{
for (j = 0; j < 4; ++j)
{
(*state)[j][i] = getSBoxValue((*state)[j][i]);
}
}
}
static void ShiftRows(state_t* state)
{
uint8_t temp;
// Rotate first row 1 columns to left
temp = (*state)[0][1];
(*state)[0][1] = (*state)[1][1];
(*state)[1][1] = (*state)[2][1];
(*state)[2][1] = (*state)[3][1];
(*state)[3][1] = temp;
// Rotate second row 2 columns to left
temp = (*state)[0][2];
(*state)[0][2] = (*state)[2][2];
(*state)[2][2] = temp;
temp = (*state)[1][2];
(*state)[1][2] = (*state)[3][2];
(*state)[3][2] = temp;
// Rotate third row 3 columns to left
temp = (*state)[0][3];
(*state)[0][3] = (*state)[3][3];
(*state)[3][3] = (*state)[2][3];
(*state)[2][3] = (*state)[1][3];
(*state)[1][3] = temp;
}
static uint8_t xtime(uint8_t x)
{
return ((x<<1) ^ (((x>>7) & 1) * 0x1b));
}
static void MixColumns(state_t* state)
{
uint8_t i;
uint8_t Tmp, Tm, t;
for (i = 0; i < 4; ++i)
{
t = (*state)[i][0];
Tmp = (*state)[i][0] ^ (*state)[i][1] ^ (*state)[i][2] ^ (*state)[i][3] ;
Tm = (*state)[i][0] ^ (*state)[i][1] ; Tm = xtime(Tm); (*state)[i][0] ^= Tm ^ Tmp ;
Tm = (*state)[i][1] ^ (*state)[i][2] ; Tm = xtime(Tm); (*state)[i][1] ^= Tm ^ Tmp ;
Tm = (*state)[i][2] ^ (*state)[i][3] ; Tm = xtime(Tm); (*state)[i][2] ^= Tm ^ Tmp ;
Tm = (*state)[i][3] ^ t ; Tm = xtime(Tm); (*state)[i][3] ^= Tm ^ Tmp ;
}
}
#define Multiply(x, y) \
( ((y & 1) * x) ^ \
((y>>1 & 1) * xtime(x)) ^ \
((y>>2 & 1) * xtime(xtime(x))) ^ \
((y>>3 & 1) * xtime(xtime(xtime(x)))) ^ \
((y>>4 & 1) * xtime(xtime(xtime(xtime(x)))))) \
#define getSBoxInvert(num) (rsbox[(num)])
static void InvMixColumns(state_t* state)
{
int i;
uint8_t a, b, c, d;
for (i = 0; i < 4; ++i)
{
a = (*state)[i][0];
b = (*state)[i][1];
c = (*state)[i][2];
d = (*state)[i][3];
(*state)[i][0] = Multiply(a, 0x0e) ^ Multiply(b, 0x0b) ^ Multiply(c, 0x0d) ^ Multiply(d, 0x09);
(*state)[i][1] = Multiply(a, 0x09) ^ Multiply(b, 0x0e) ^ Multiply(c, 0x0b) ^ Multiply(d, 0x0d);
(*state)[i][2] = Multiply(a, 0x0d) ^ Multiply(b, 0x09) ^ Multiply(c, 0x0e) ^ Multiply(d, 0x0b);
(*state)[i][3] = Multiply(a, 0x0b) ^ Multiply(b, 0x0d) ^ Multiply(c, 0x09) ^ Multiply(d, 0x0e);
}
}
static void InvSubBytes(state_t* state)
{
uint8_t i, j;
for (i = 0; i < 4; ++i)
{
for (j = 0; j < 4; ++j)
{
(*state)[j][i] = getSBoxInvert((*state)[j][i]);
}
}
}
static void InvShiftRows(state_t* state)
{
uint8_t temp;
// Rotate first row 1 columns to right
temp = (*state)[3][1];
(*state)[3][1] = (*state)[2][1];
(*state)[2][1] = (*state)[1][1];
(*state)[1][1] = (*state)[0][1];
(*state)[0][1] = temp;
// Rotate second row 2 columns to right
temp = (*state)[0][2];
(*state)[0][2] = (*state)[2][2];
(*state)[2][2] = temp;
temp = (*state)[1][2];
(*state)[1][2] = (*state)[3][2];
(*state)[3][2] = temp;
// Rotate third row 3 columns to right
temp = (*state)[0][3];
(*state)[0][3] = (*state)[1][3];
(*state)[1][3] = (*state)[2][3];
(*state)[2][3] = (*state)[3][3];
(*state)[3][3] = temp;
}
// Cipher is the main function that encrypts the PlainText,
// or produces a keystream, depending on application.
static void Cipher(state_t* state, const uint8_t* RoundKey)
{
uint8_t round = 0;
// Add the First round key to the state before starting the rounds.
AddRoundKey(0, state, RoundKey);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr rounds are executed in the loop below.
// Last one without MixColumns()
for (round = 1; ; ++round)
{
SubBytes(state);
ShiftRows(state);
if (round == Nr) {
break;
}
MixColumns(state);
AddRoundKey(round, state, RoundKey);
}
// Add round key to last round
AddRoundKey(Nr, state, RoundKey);
}
static void InvCipher(state_t* state, const uint8_t* RoundKey)
{
uint8_t round = 0;
// Add the First round key to the state before starting the rounds.
AddRoundKey(Nr, state, RoundKey);
// There will be Nr rounds.
// The first Nr-1 rounds are identical.
// These Nr rounds are executed in the loop below.
// Last one without InvMixColumn()
for (round = (Nr - 1); ; --round)
{
InvShiftRows(state);
InvSubBytes(state);
AddRoundKey(round, state, RoundKey);
if (round == 0) {
break;
}
InvMixColumns(state);
}
}
void AES_ECB_encrypt(const struct AES_ctx* ctx, uint8_t* buf)
{
// The next function call encrypts the PlainText with the Key using AES algorithm.
Cipher((state_t*)buf, ctx->RoundKey);
}
void AES_ECB_decrypt(const struct AES_ctx* ctx, uint8_t* buf)
{
// The next function call decrypts the PlainText with the Key using AES algorithm.
InvCipher((state_t*)buf, ctx->RoundKey);
}
static void XorWithIv(uint8_t* buf, const uint8_t* Iv)
{
uint8_t i;
for (i = 0; i < AES_BLOCKLEN; ++i)
{
buf[i] ^= Iv[i];
}
}
void AES_CBC_encrypt_buffer(struct AES_ctx *ctx, uint8_t* buf, size_t length)
{
size_t i;
uint8_t *Iv = ctx->Iv;
for (i = 0; i < length; i += AES_BLOCKLEN)
{
XorWithIv(buf, Iv);
Cipher((state_t*)buf, ctx->RoundKey);
Iv = buf;
buf += AES_BLOCKLEN;
}
/* store Iv in ctx for next call */
memcpy(ctx->Iv, Iv, AES_BLOCKLEN);
}
void AES_CBC_decrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length)
{
size_t i;
uint8_t storeNextIv[AES_BLOCKLEN];
for (i = 0; i < length; i += AES_BLOCKLEN)
{
memcpy(storeNextIv, buf, AES_BLOCKLEN);
InvCipher((state_t*)buf, ctx->RoundKey);
XorWithIv(buf, ctx->Iv);
memcpy(ctx->Iv, storeNextIv, AES_BLOCKLEN);
buf += AES_BLOCKLEN;
}
}
/* Symmetrical operation: same function for encrypting as for decrypting. Note any IV/nonce should never be reused with the same key */
void AES_CTR_xcrypt_buffer(struct AES_ctx* ctx, uint8_t* buf, size_t length)
{
uint8_t buffer[AES_BLOCKLEN];
size_t i;
int bi;
for (i = 0, bi = AES_BLOCKLEN; i < length; ++i, ++bi)
{
if (bi == AES_BLOCKLEN) /* we need to regen xor compliment in buffer */
{
memcpy(buffer, ctx->Iv, AES_BLOCKLEN);
Cipher((state_t*)buffer,ctx->RoundKey);
/* Increment Iv and handle overflow */
for (bi = (AES_BLOCKLEN - 1); bi >= 0; --bi)
{
/* inc will overflow */
if (ctx->Iv[bi] == 255)
{
ctx->Iv[bi] = 0;
continue;
}
ctx->Iv[bi] += 1;
break;
}
bi = 0;
}
buf[i] = (buf[i] ^ buffer[bi]);
}
}
//byte-wise output of AES OFB Keystream
//input iv is a 16-byte uint8_t array of initialization vector
//input key is up to 32-byte uint8_t array of key value
//input type is the type/key len of AES required (0-128, 1-192, 2-256)
//input nblocks is the number of rounds of 16-byte keystream output blocks requried
//output is a uint8_t bytewise array, each round filled with 16-bytes from aes keystream output
void aes_ofb_keystream_output (uint8_t * iv, uint8_t * key, uint8_t * output, int type, int nblocks)
{
int i;
uint8_t input_register[16]; //OFB Input Register
memset (input_register, 0, sizeof(input_register));
//Set values specific to type (128/192/256)
if (type == 0) //128
{
Nb = 4;
Nk = 4;
Nr = 10;
}
else if (type == 1) //192
{
Nb = 4;
Nk = 6;
Nr = 12;
}
else //if (type == 2) //256
{
Nb = 4;
Nk = 8;
Nr = 14;
}
struct AES_ctx ctx;
//load first round of input_register with received IV (OFB First Input Register)
memcpy (input_register, iv, 16*sizeof(uint8_t) );
//initialize the key variable for the Cipher function
memset (ctx.RoundKey, 0, 240*sizeof(uint8_t));
KeyExpansion(ctx.RoundKey, key);
//execute the cipher function, and copy ciphered input_register to output for required number of rounds
for (i = 0; i < nblocks; i++)
{
Cipher((state_t*)input_register, ctx.RoundKey); //input_register is returned as output, and is put back in as object feedback
memcpy (output+(i*16), input_register, 16*sizeof(uint8_t) ); //copy ciphered input_register to output
}
}
//byte-wise AES CFB (Cipher Feedback) Payload operating in 128-bit block mode
//input in is a uint8_t bytewise array,is the input to be ciphered (encrypted or decrypted)
//input iv is a 16-byte uint8_t array of initialization vector
//input key is up to 32-byte uint8_t array of key value
//input type is the type/key len of AES required (0-128, 1-192, 2-256)
//input nblocks is the number of rounds of 16-byte payload blocks requried (last block will need padding if not flush)
//output out is a uint8_t bytewise array, each round filled with 16-bytes of cfb ciphered output (encrypted or decrypted)
//de is a bit-flag signalling to run Cipher (encrypt) on 1, or InvCipher (decrypt) on 0
void aes_cfb_bytewise_payload_crypt (uint8_t * iv, uint8_t * key, uint8_t * in, uint8_t * out, int type, int nblocks, int de)
{
int i, j;
uint8_t input_register[16]; //Input Register
memset (input_register, 0, sizeof(input_register));
//Set values specific to type (128/192/256)
if (type == 0) //128
{
Nb = 4;
Nk = 4;
Nr = 10;
}
else if (type == 1) //192
{
Nb = 4;
Nk = 6;
Nr = 12;
}
else //if (type == 2) //256
{
Nb = 4;
Nk = 8;
Nr = 14;
}
struct AES_ctx ctx;
//load first round of input_register with received IV (CFB First Input Register)
memcpy (input_register, iv, 16*sizeof(uint8_t) );
//initialize the key variable for the Cipher function
memset (ctx.RoundKey, 0, 240*sizeof(uint8_t));
KeyExpansion(ctx.RoundKey, key);
//execute the cipher function, and copy ciphered input_register to output for required number of rounds
for (i = 0; i < nblocks; i++)
{
//the cipher is always run in the foward, or encryption mode
Cipher((state_t*)input_register, ctx.RoundKey);
//xor the current input 'in' to the current state of the input_register for cipher feedback
for (j = 0; j < 16; j++)
input_register[j] ^= in[j+(i*16)];
//copy ciphered/xor'd input_register to output 'out'
memcpy (out+(i*16), input_register, 16*sizeof(uint8_t) );
//if running in decryption mode, we feed in the next round of input
if (!de)
memcpy(input_register, in+(i*16), 16*sizeof(uint8_t));
}
}
//byte-wise AES CBC (Cipher Block Chaining) //Yeah, I know this already exists, but wanted a custom convenience wrapper version
//input in is a uint8_t bytewise array,is the input to be ciphered (encrypted or decrypted)
//input iv is a 16-byte uint8_t array of initialization vector
//input key is up to 32-byte uint8_t array of key value
//input type is the type/key len of AES required (0-128, 1-192, 2-256)
//input nblocks is the number of rounds of 16-byte payload blocks requried (last block will need padding if not flush)
//output out is a uint8_t bytewise array, each round filled with 16-bytes of cfb ciphered output (encrypted or decrypted)
//de is a bit-flag signalling to run Cipher (encrypt) on 1, or InvCipher (decrypt) on 0
void aes_cbc_bytewise_payload_crypt (uint8_t * iv, uint8_t * key, uint8_t * in, uint8_t * out, int type, int nblocks, int de)
{
int i, j;
uint8_t input_register[16]; //Input Register
memset (input_register, 0, sizeof(input_register));
//Set values specific to type (128/192/256)
if (type == 0) //128
{
Nb = 4;
Nk = 4;
Nr = 10;
}
else if (type == 1) //192
{
Nb = 4;
Nk = 6;
Nr = 12;
}
else //if (type == 2) //256
{
Nb = 4;
Nk = 8;
Nr = 14;
}
struct AES_ctx ctx;
//load first round of input_register accordingly
if (de)
memcpy (input_register, iv, 16*sizeof(uint8_t) );
else memcpy (input_register, in, 16*sizeof(uint8_t) );
//initialize the key variable for the Cipher function
memset (ctx.RoundKey, 0, 240*sizeof(uint8_t));
KeyExpansion(ctx.RoundKey, key);
//
for (i = 0; i < nblocks; i++)
{
//run encryption or decryption depending on de value
if (de) //encrypt
{
//xor the current input 'in' pt to the current state of the input_register for cbc feedback
for (j = 0; j < 16; j++)
input_register[j] ^= in[j+(i*16)];
Cipher((state_t*)input_register, ctx.RoundKey);
//copy ciphered input_register to output 'out'
memcpy (out+(i*16), input_register, 16*sizeof(uint8_t) );
}
else //decrypt
{
InvCipher((state_t*)input_register, ctx.RoundKey);
//copy ciphered input_register to output 'out'
memcpy (out+(i*16), input_register, 16*sizeof(uint8_t) );
//xor the current output by IV, or by last received CT
if (i == 0)
{
for (j = 0; j < 16; j++)
out[j] ^= iv[j];
}
else
{
for (j = 0; j < 16; j++)
out[j+(i*16)] ^= in[j+((i-1)*16)];
}
//copy in next segment for input_register (if not last)
if (i < nblocks)
memcpy(input_register, in+((i+1)*16), 16*sizeof(uint8_t) );
}
}
}
//byte-wise AES CBC_MAC (Cipher Block Chaining Message Authentication) //This is slightly different than above, no IV is present,
//but if iv is desireable, it will need to be pre-XOR'd with the first plaintext input block by the calling function
//input in is a uint8_t bytewise array, is the input to be ciphered.
//input key is up to 32-byte uint8_t array of key value
//input type is the type/key len of AES required (0-128, 1-192, 2-256)
//input nblocks is the number of rounds of 16-byte payload blocks requried (last block will need padding if not flush)
//output out is a uint8_t bytewise array, with only the final round output as the MAC octets
//NOTE: When doing a cbc_mac, you should only run it in the forward (encryption) mode to get the mac bytes
void aes_cbc_mac_generator (uint8_t * key, uint8_t * in, uint8_t * out, int type, int nblocks)
{
int i, j;
uint8_t input_register[16]; //Input Register
memset (input_register, 0, sizeof(input_register));
//Set values specific to type (128/192/256)
if (type == 0) //128
{
Nb = 4;
Nk = 4;
Nr = 10;
}
else if (type == 1) //192
{
Nb = 4;
Nk = 6;
Nr = 12;
}
else //if (type == 2) //256
{
Nb = 4;
Nk = 8;
Nr = 14;
}
struct AES_ctx ctx;
//initialize the key variable for the Cipher function
memset (ctx.RoundKey, 0, 240*sizeof(uint8_t));
KeyExpansion(ctx.RoundKey, key);
//
for (i = 0; i < nblocks; i++)
{
//xor the current input 'in' pt to the current state of the input_register for cbc feedback
//if this is the first iteration, this will load the first round plain text instead
for (j = 0; j < 16; j++)
input_register[j] ^= in[j+((i+0)*16)];
Cipher((state_t*)input_register, ctx.RoundKey);
//debug, load out all intermediate output register values
// memcpy (out+(i*16), input_register, 16*sizeof(uint8_t) );
}
//copy final ciphered input_register to output 'out', user will determine how many bytes of output they want for MAC
memcpy (out, input_register, 16*sizeof(uint8_t) );
}
//byte-wise output of AES ECB Ciphering/Deciphering
//input is uint8_t byte-wise (16-bytes) data to be ciphered or deciphered
//input key is up to 32-byte uint8_t array of key value
//input type is the type/len of AES required (0-128, 1-192, 2-256)
//output is a uint8_t bytewise array of ciphered or deciphered input
//de is a bit-flag signalling to run Cipher (encrypt) on 1, or InvCipher (decrypt) on 0
void aes_ecb_bytewise_payload_crypt (uint8_t * input, uint8_t * key, uint8_t * output, int type, int de)
{
uint8_t input_register[16]; //ECB Input Register
memset (input_register, 0, sizeof(input_register));
//Set values specific to type (128/192/256)
if (type == 0) //128
{
Nb = 4;
Nk = 4;
Nr = 10;
}
else if (type == 1) //192
{
Nb = 4;
Nk = 6;
Nr = 12;
}
else //if (type == 2) //256
{
Nb = 4;
Nk = 8;
Nr = 14;
}
struct AES_ctx ctx;
//load input_register with received input (ECB Payload)
memcpy (input_register, input, 16*sizeof(uint8_t) );
//initialize the key variable for the Cipher function
memset (ctx.RoundKey, 0, 240*sizeof(uint8_t));
KeyExpansion(ctx.RoundKey, key);
//run encryption or decryption depending on de value
if (de) //encrypt
Cipher((state_t*)input_register, ctx.RoundKey);
else //decrypt
InvCipher((state_t*)input_register, ctx.RoundKey);
//copy ciphered/deciphered input_register to output
memcpy (output, input_register, 16*sizeof(uint8_t) );
}
//symmetrical ctr mode payload encryption and decryption
void aes_ctr_bitwise_payload_crypt (uint8_t * iv, uint8_t * key, uint8_t * payload, int type)
{
//Set values specific to type (128/192/256)
if (type == 0) //128
{
Nb = 4;
Nk = 4;
Nr = 10;
}
else if (type == 1) //192
{
Nb = 4;
Nk = 6;
Nr = 12;
}
else //if (type == 2) //256
{
Nb = 4;
Nk = 8;
Nr = 14;
}
struct AES_ctx ctx;
//init and set the iv and key variables
memset (ctx.RoundKey, 0, 240*sizeof(uint8_t));
memset (ctx.Iv, 0, 16*sizeof(uint8_t));
KeyExpansion(ctx.RoundKey, key);
memcpy (ctx.Iv, iv, AES_BLOCKLEN);
//pack input bit-wise payload to byte array
uint8_t payload_bytes[16];
memset (payload_bytes, 0, sizeof(payload_bytes));
pack_bit_array_into_byte_array (payload, payload_bytes, 16);
//pass to internal CTR handler for payload
AES_CTR_xcrypt_buffer(&ctx, payload_bytes, 16);
//unpack output bytes back to bits
unpack_byte_array_into_bit_array(payload_bytes, payload, 16);
}
//symmetrical ctr mode payload encryption and decryption
void aes_ctr_bytewise_payload_crypt (uint8_t * iv, uint8_t * key, uint8_t * payload, int type)
{
//Set values specific to type (128/192/256)
if (type == 0) //128
{
Nb = 4;
Nk = 4;
Nr = 10;
}
else if (type == 1) //192
{
Nb = 4;
Nk = 6;
Nr = 12;
}
else //if (type == 2) //256
{
Nb = 4;
Nk = 8;
Nr = 14;
}
struct AES_ctx ctx;
//init and set the iv and key variables
memset (ctx.RoundKey, 0, 240*sizeof(uint8_t));
memset (ctx.Iv, 0, 16*sizeof(uint8_t));
KeyExpansion(ctx.RoundKey, key);
memcpy (ctx.Iv, iv, AES_BLOCKLEN);
//pass to internal CTR handler for payload
AES_CTR_xcrypt_buffer(&ctx, payload, 16);
}