-
Notifications
You must be signed in to change notification settings - Fork 29
/
Copy pathvggish_params.py
62 lines (53 loc) · 2.24 KB
/
vggish_params.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
# Copyright 2017 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Global parameters for the VGGish model.
See vggish_slim.py for more information.
"""
from os.path import join as pjoin
# Architectural constants.
NUM_FRAMES = 96 # Frames in input mel-spectrogram patch.
NUM_BANDS = 64 # Frequency bands in input mel-spectrogram patch.
EMBEDDING_SIZE = 128 # Size of embedding layer.
# Hyperparameters used in feature and example generation.
SAMPLE_RATE = 16000
STFT_WINDOW_LENGTH_SECONDS = 0.025
STFT_HOP_LENGTH_SECONDS = 0.010
NUM_MEL_BINS = NUM_BANDS
MEL_MIN_HZ = 125
MEL_MAX_HZ = 7500
LOG_OFFSET = 0.01 # Offset used for stabilized log of input mel-spectrogram.
EXAMPLE_WINDOW_SECONDS = 0.96 # Each example contains 96 10ms frames
EXAMPLE_HOP_SECONDS = 0.96 # with zero overlap.
# Parameters used for embedding postprocessing.
PCA_EIGEN_VECTORS_NAME = 'pca_eigen_vectors'
PCA_MEANS_NAME = 'pca_means'
QUANTIZE_MIN_VAL = -2.0
QUANTIZE_MAX_VAL = +2.0
# Hyperparameters used in training.
INIT_STDDEV = 0.01 # Standard deviation used to initialize weights.
LEARNING_RATE = 1e-4 # Learning rate for the Adam optimizer.
ADAM_EPSILON = 1e-8 # Epsilon for the Adam optimizer.
# Names of ops, tensors, and features.
INPUT_OP_NAME = 'vggish/input_features'
INPUT_TENSOR_NAME = INPUT_OP_NAME + ':0'
OUTPUT_OP_NAME = 'vggish/embedding'
OUTPUT_TENSOR_NAME = OUTPUT_OP_NAME + ':0'
AUDIO_EMBEDDING_FEATURE_NAME = 'audio_embedding'
# Checkpoint
CHECKPOINT_DIR = './data/vggish'
CHECKPOINT_NAME = 'vggish_model.ckpt'
PCA_PARAMS_NAME = 'vggish_pca_params.npz'
CHECKPOINT = pjoin(CHECKPOINT_DIR, CHECKPOINT_NAME)
PCA_PARAMS = pjoin(CHECKPOINT_DIR, PCA_PARAMS_NAME)