-
Notifications
You must be signed in to change notification settings - Fork 675
/
Copy pathtrain.py
122 lines (91 loc) · 3.23 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import gzip
import random
from accelerate.utils.tqdm import tqdm
import numpy as np
import torch
from lion_pytorch import Lion
from torch.nn import functional as F
from torch.utils.data import DataLoader, Dataset
from palm_rlhf_pytorch import PaLM
from accelerate import Accelerator
# constants
NUM_BATCHES = int(1e5)
BATCH_SIZE = 4
GRADIENT_ACCUMULATE_EVERY = 4
LEARNING_RATE = 1e-4
VALIDATE_EVERY = 100
PRIME_LENGTH = 128
GENERATE_EVERY = 500
GENERATE_LENGTH = 512
SEQ_LEN = 1024
# helpers
def cycle(loader):
while True:
for data in loader:
yield data
def decode_token(token):
return str(chr(max(32, token)))
def decode_tokens(tokens):
return "".join(list(map(decode_token, tokens)))
# accelerator
accelerator = Accelerator(gradient_accumulation_steps=GRADIENT_ACCUMULATE_EVERY)
device = accelerator.device
# instantiate palm
model = PaLM(
num_tokens=256,
dim=512,
depth=8,
flash_attn=True
).to(device)
# prepare enwik8 data
with gzip.open("./data/enwik8.gz") as file:
data = np.frombuffer(file.read(int(95e6)), dtype=np.uint8).copy()
np_train, np_valid = np.split(data, [int(90e6)])
data_train, data_val = torch.from_numpy(np_train), torch.from_numpy(np_valid)
class TextSamplerDataset(Dataset):
def __init__(self, data, seq_len):
super().__init__()
self.data = data
self.seq_len = seq_len
def __getitem__(self, index):
rand_start = torch.randint(0, self.data.size(0) - self.seq_len, (1,))
full_seq = self.data[rand_start : rand_start + self.seq_len + 1].long()
return full_seq.to(device)
def __len__(self):
return self.data.size(0) // self.seq_len
train_dataset = TextSamplerDataset(data_train, SEQ_LEN)
val_dataset = TextSamplerDataset(data_val, SEQ_LEN)
train_loader = cycle(DataLoader(train_dataset, batch_size=BATCH_SIZE))
val_loader = cycle(DataLoader(val_dataset, batch_size=BATCH_SIZE))
# optimizer
optim = Lion(model.palm_parameters(), lr = LEARNING_RATE)
model, optim, train_loader, val_loader = accelerator.prepare(
model, optim, train_loader, val_loader
)
# training
for i in tqdm(range(NUM_BATCHES), mininterval=10.0, desc="training"):
model.train()
with accelerator.accumulate(model):
loss = model(next(train_loader), return_loss = True)
accelerator.backward(loss / GRADIENT_ACCUMULATE_EVERY)
accelerator.print(f"training loss: {loss.item()}")
accelerator.clip_grad_norm_(model.parameters(), 0.5)
optim.step()
optim.zero_grad()
if i % VALIDATE_EVERY == 0:
model.eval()
with torch.no_grad():
loss = model(next(val_loader), return_loss = True)
accelerator.print(f"validation loss: {loss.item()}")
if i % GENERATE_EVERY == 0:
model.eval()
inp = random.choice(val_dataset)[:PRIME_LENGTH]
prime = decode_tokens(inp)
accelerator.print(f"%s \n\n %s", (prime, "*" * 100))
# Check if model is wrapped
if hasattr(model, "module"):
sample = model.module.generate(GENERATE_LENGTH, inp[None, ...])
else:
sample = model.generate(GENERATE_LENGTH, inp[None, ...])
output_str = decode_tokens(sample[0])
accelerator.print(output_str, "\n")