-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathstock.js
86 lines (77 loc) · 2.53 KB
/
stock.js
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
// the data used for this example was borrowed from the following site:
// http://bl.ocks.org/tmcw/3931800/1bed6c10905952539000301086378c6ed1c75c84
var csvParse = require('csv-parse'),
fs = require('fs'),
LinearRegression = require('../index').LinearRegression,
_ = require('underscore');
var apiKey = process.env.PLOTLY_API_KEY;
var username = process.env.PLOTLY_USERNAME;
var plotly = require('plotly')(username,apiKey);
fs.readFile('./examples/stock.tsv', 'utf8', function(err, dataStr) {
if (err) {
console.log(err);
process.exit(1);
}
csvParse(dataStr, {delimiter: '\t', auto_parse: true}, function(err, data) {
// We are only going two columns:
// x: Date
// y: AAPL Stock Price
var x = data.map(function(h) {
return Date.parse(h[0]);
});
var y = data.map(function(h) { return h[1]; }); // y is price
// for the plot, we need the x values in a format that plotly can understand
var xForPlot = _.map(data, function(d) {
var date = new Date(Date.parse(d[0]));
return date.toISOString().slice(0,10);
});
// Initialize and train the linear regression
var lr = new LinearRegression(x, y, {algorithm: 'GradientDescent', learningRate: 0.1, numberOfIterations: 5000});
lr.train(function(err) {
if (err) {
console.log('error', err);
process.exit(2);
}
// Use the linear regression function to get a set of data to graph the linear regression line
var y2 = [];
x.forEach(function(xi) {
y2.push(lr.predict(xi));
});
// Create scatter plots of training data + linear regression function
var layout = {
title: 'AAPL Stock Prices',
xaxis: {
title: 'Date'
},
yaxis: {
title: 'Price in $'
}
};
var trace1 = {
x: xForPlot,
y: y,
name: 'Training Data',
mode: "lines",
type: "scatter"
};
var trace2 = {
x: xForPlot,
y: y2,
name: 'Linear Regression',
mode: "lines",
type: "scatter"
};
var plotData = [trace1, trace2];
var graphOptions = {layout: layout,filename: "aapl-stock-linear-regression-with-shaman", fileopt: "overwrite"}
plotly.plot(plotData, graphOptions, function (err, msg) {
if (err) {
console.log(err);
process.exit(3);
} else {
console.log('Success! The plot (' + msg.filename + ') can be found at ' + msg.url);
process.exit();
}
});
});
});
});