-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain_SCD.py
227 lines (198 loc) · 9.83 KB
/
train_SCD.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
import time
import torch.autograd
from skimage import io
from torch import optim
from tensorboardX import SummaryWriter
from torch.utils.data import DataLoader
working_path = os.path.dirname(os.path.abspath(__file__))
from utils.utils import accuracy, SCDD_eval_all, AverageMeter
from utils.loss import *
from datasets import RS_ST as RS
from lib.models import HGINet as Net
NET_NAME = 'HGINet'
DATA_NAME = 'ST'
#Training options
###############################################
args = {
'train_batch_size': 16,
'val_batch_size': 16,
'lr': 0.0001,
'epochs': 80,
'gpu': True,
'lr_decay_power': 1.5,
'weight_decay': 5e-4,
'momentum': 0.9,
'print_freq': 50,
'predict_step': 5,
'pred_dir': os.path.join(working_path, 'results', DATA_NAME),
'chkpt_dir': os.path.join(working_path, 'checkpoints', DATA_NAME),
'log_dir': os.path.join(working_path, 'logs', DATA_NAME, NET_NAME),
'load_path': os.path.join(working_path, 'checkpoints', DATA_NAME, 'pretrained.pth')
}
###############################################
if not os.path.exists(args['log_dir']): os.makedirs(args['log_dir'])
if not os.path.exists(args['pred_dir']): os.makedirs(args['pred_dir'])
if not os.path.exists(args['chkpt_dir']): os.makedirs(args['chkpt_dir'])
writer = SummaryWriter(args['log_dir'])
def main():
net = Net(64, num_classes=RS.num_classes, pretrained_path=r'E:\HGINet\pretrained\pvt_v2_b2.pth').cuda()
train_set = RS.Data('train', random_flip=True)
train_loader = DataLoader(train_set, batch_size=args['train_batch_size'], num_workers=4, shuffle=True)
val_set = RS.Data('test')
val_loader = DataLoader(val_set, batch_size=args['val_batch_size'], num_workers=4, shuffle=False)
criterion = CrossEntropyLoss2d(ignore_index=0).cuda()
#optimizer = optim.SGD(filter(lambda p: p.requires_grad, net.parameters()), lr=0.001, weight_decay=args['weight_decay'], momentum=args['momentum'], nesterov=False)
optimizer = optim.AdamW(net.parameters(), lr=args['lr'])
# Please consider use the AdamW optimizer with intinal learning of 0.0001 if the detection accuracy is nonideal in a difficult dataset
# (当在某个数据集上检测精度不理想时考虑使用学习率为0.0001的AdamW优化器)
train(train_loader, net, criterion, optimizer, val_loader)
writer.close()
print('Training finished.')
def train(train_loader, net, criterion, optimizer, val_loader):
bestaccT=0
bestFscdV=0.0
bestloss=1.0
begin_time = time.time()
all_iters = float(len(train_loader)*args['epochs'])
criterion_sc = ChangeSimilarity().cuda()
curr_epoch=0
while True:
torch.cuda.empty_cache()
net.train()
start = time.time()
acc_meter = AverageMeter()
train_seg_loss = AverageMeter()
train_bn_loss = AverageMeter()
train_sc_loss = AverageMeter()
curr_iter = curr_epoch*len(train_loader)
for i, data in enumerate(train_loader):
running_iter = curr_iter+i+1
adjust_lr(optimizer, running_iter, all_iters)
imgs_A, imgs_B, labels_A, labels_B = data
if args['gpu']:
imgs_A = imgs_A.cuda().float()
imgs_B = imgs_B.cuda().float()
labels_bn = (labels_A>0).unsqueeze(1).cuda().float()
labels_A = labels_A.cuda().long()
labels_B = labels_B.cuda().long()
optimizer.zero_grad()
out_change, outputs_A, outputs_B = net(imgs_A, imgs_B)
assert outputs_A.size()[1] == RS.num_classes
loss_seg = criterion(outputs_A, labels_A) * 0.5 + criterion(outputs_B, labels_B) * 0.5
loss_bn = weighted_BCE_logits(out_change, labels_bn)
loss_sc = criterion_sc(outputs_A[:,1:], outputs_B[:,1:], labels_bn)
loss = loss_seg + loss_bn + loss_sc
loss.backward()
optimizer.step()
labels_A = labels_A.cpu().detach().numpy()
labels_B = labels_B.cpu().detach().numpy()
outputs_A = outputs_A.cpu().detach()
outputs_B = outputs_B.cpu().detach()
change_mask = F.sigmoid(out_change).cpu().detach()>0.5
preds_A = torch.argmax(outputs_A, dim=1)
preds_B = torch.argmax(outputs_B, dim=1)
preds_A = (preds_A*change_mask.squeeze().long()).numpy()
preds_B = (preds_B*change_mask.squeeze().long()).numpy()
# batch_valid_sum = 0
acc_curr_meter = AverageMeter()
for (pred_A, pred_B, label_A, label_B) in zip(preds_A, preds_B, labels_A, labels_B):
acc_A, valid_sum_A = accuracy(pred_A, label_A)
acc_B, valid_sum_B = accuracy(pred_B, label_B)
acc = (acc_A + acc_B)*0.5
acc_curr_meter.update(acc)
acc_meter.update(acc_curr_meter.avg)
train_seg_loss.update(loss_seg.cpu().detach().numpy())
train_bn_loss.update(loss_bn.cpu().detach().numpy())
train_sc_loss.update(loss_sc.cpu().detach().numpy())
curr_time = time.time() - start
if (i + 1) % args['print_freq'] == 0:
print('[epoch %d] [iter %d / %d %.1fs] [lr %f] [train seg_loss %.4f bn_loss %.4f acc %.2f]' % (
curr_epoch, i + 1, len(train_loader), curr_time, optimizer.param_groups[0]['lr'],
train_seg_loss.val, train_bn_loss.val, acc_meter.val*100)) #sc_loss %.4f, train_sc_loss.val,
writer.add_scalar('train seg_loss', train_seg_loss.val, running_iter)
writer.add_scalar('train sc_loss', train_sc_loss.val, running_iter)
writer.add_scalar('train accuracy', acc_meter.val, running_iter)
writer.add_scalar('lr', optimizer.param_groups[0]['lr'], running_iter)
Fscd_v, mIoU_v, Sek_v, acc_v, loss_v = validate(val_loader, net, criterion, curr_epoch)
# torch.save(net.state_dict(), os.path.join(args['chkpt_dir'], str(curr_epoch) + '.pth'))
if acc_meter.avg>bestaccT: bestaccT=acc_meter.avg
if Fscd_v>bestFscdV:
bestFscdV=Fscd_v
bestaccV=acc_v
bestloss=loss_v
torch.save(net.state_dict(), os.path.join(args['chkpt_dir'], NET_NAME+'_%de_mIoU%.2f_Sek%.2f_Fscd%.2f_OA%.2f.pth'\
%(curr_epoch, mIoU_v*100, Sek_v*100, Fscd_v*100, acc_v*100)) )
print('Total time: %.1fs Best rec: Train acc %.2f, Val Fscd %.2f acc %.2f loss %.4f' %(time.time()-begin_time, bestaccT*100, bestFscdV*100, bestaccV*100, bestloss))
curr_epoch += 1
# scheduler.step()
if curr_epoch >= args['epochs']:
return
def validate(val_loader, net, criterion, curr_epoch):
# the following code is written
net.eval()
torch.cuda.empty_cache()
start = time.time()
val_loss = AverageMeter()
acc_meter = AverageMeter()
preds_all = []
labels_all = []
for vi, data in enumerate(val_loader):
imgs_A, imgs_B, labels_A, labels_B = data
if args['gpu']:
imgs_A = imgs_A.cuda().float()
imgs_B = imgs_B.cuda().float()
labels_A = labels_A.cuda().long()
labels_B = labels_B.cuda().long()
with torch.no_grad():
out_change, outputs_A, outputs_B = net(imgs_A, imgs_B)
loss_A = criterion(outputs_A, labels_A)
loss_B = criterion(outputs_B, labels_B)
loss = loss_A * 0.5 + loss_B * 0.5
val_loss.update(loss.cpu().detach().numpy())
labels_A = labels_A.cpu().detach().numpy()
labels_B = labels_B.cpu().detach().numpy()
outputs_A = outputs_A.cpu().detach()
outputs_B = outputs_B.cpu().detach()
change_mask = F.sigmoid(out_change).cpu().detach()>0.5
preds_A = torch.argmax(outputs_A, dim=1)
preds_B = torch.argmax(outputs_B, dim=1)
preds_A = (preds_A*change_mask.squeeze().long()).numpy()
preds_B = (preds_B*change_mask.squeeze().long()).numpy()
for (pred_A, pred_B, label_A, label_B) in zip(preds_A, preds_B, labels_A, labels_B):
acc_A, valid_sum_A = accuracy(pred_A, label_A)
acc_B, valid_sum_B = accuracy(pred_B, label_B)
preds_all.append(pred_A)
preds_all.append(pred_B)
labels_all.append(label_A)
labels_all.append(label_B)
acc = (acc_A + acc_B)*0.5
acc_meter.update(acc)
if curr_epoch%args['predict_step']==0 and vi==0:
pred_A_color = RS.Index2Color(preds_A[0])
pred_B_color = RS.Index2Color(preds_B[0])
io.imsave(os.path.join(args['pred_dir'], NET_NAME+'_A.png'), pred_A_color)
io.imsave(os.path.join(args['pred_dir'], NET_NAME+'_B.png'), pred_B_color)
print('Prediction saved!')
Fscd, IoU_mean, Sek = SCDD_eval_all(preds_all, labels_all, RS.num_classes)
curr_time = time.time() - start
print('%.1fs Val loss: %.2f Fscd: %.2f IoU: %.2f Sek: %.2f Accuracy: %.2f'\
%(curr_time, val_loss.average(), Fscd*100, IoU_mean*100, Sek*100, acc_meter.average()*100))
writer.add_scalar('val_loss', val_loss.average(), curr_epoch)
writer.add_scalar('val_Fscd', Fscd, curr_epoch)
writer.add_scalar('val_Accuracy', acc_meter.average(), curr_epoch)
return Fscd, IoU_mean, Sek, acc_meter.avg, val_loss.avg
def freeze_model(model):
for param in model.parameters():
param.requires_grad = False
for module in model.modules():
if isinstance(module, nn.BatchNorm2d):
module.eval()
def adjust_lr(optimizer, curr_iter, all_iter, init_lr=args['lr']):
scale_running_lr = ((1. - float(curr_iter) / all_iter) ** args['lr_decay_power'])
running_lr = init_lr * scale_running_lr
for param_group in optimizer.param_groups:
param_group['lr'] = running_lr
if __name__ == '__main__':
main()