-
Notifications
You must be signed in to change notification settings - Fork 130
/
Copy pathheatmap_score.py
210 lines (183 loc) · 8.69 KB
/
heatmap_score.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import argparse
import os, sys
import pickle
import numpy as np
import pandas as pd
from numpy.random import RandomState
from sklearn.model_selection import train_test_split
# from keras.models import load_model
from dm_image import (
get_prob_heatmap,
read_img_for_pred,
DMImageDataGenerator
)
from dm_keras_ext import get_dl_model
from dm_multi_gpu import make_parallel
from dm_resnet import add_top_layers
import keras.backend as K
data_format = K.image_data_format()
import warnings, exceptions
warnings.filterwarnings('ignore', category=exceptions.UserWarning)
def run(img_folder, dl_state, fprop_mode=False,
img_size=(1152, 896), img_height=None, img_scale=None,
rescale_factor=None,
equalize_hist=False, featurewise_center=False, featurewise_mean=71.8,
net='vgg19', batch_size=128, patch_size=256, stride=8,
avg_pool_size=(7, 7), hm_strides=(1, 1),
pat_csv='./full_img/pat.csv', pat_list=None,
out='./output/prob_heatmap.pkl'):
'''Sweep mammograms with trained DL model to create prob heatmaps
'''
# Read some env variables.
random_seed = int(os.getenv('RANDOM_SEED', 12345))
rng = RandomState(random_seed) # an rng used across board.
gpu_count = int(os.getenv('NUM_GPU_DEVICES', 1))
# Create image generator.
imgen = DMImageDataGenerator(featurewise_center=featurewise_center)
imgen.mean = featurewise_mean
# Get image and label lists.
df = pd.read_csv(pat_csv, header=0)
df = df.set_index(['patient_id', 'side'])
df.sort_index(inplace=True)
if pat_list is not None:
pat_ids = pd.read_csv(pat_list, header=0).values.ravel()
pat_ids = pat_ids.tolist()
print "Read %d patient IDs" % (len(pat_ids))
df = df.loc[pat_ids]
# Load DL model, preprocess.
print "Load patch classifier:", dl_state; sys.stdout.flush()
dl_model, preprocess_input, _ = get_dl_model(net, resume_from=dl_state)
if fprop_mode:
dl_model = add_top_layers(dl_model, img_size, patch_net=net,
avg_pool_size=avg_pool_size,
return_heatmap=True, hm_strides=hm_strides)
if gpu_count > 1:
print "Make the model parallel on %d GPUs" % (gpu_count)
sys.stdout.flush()
dl_model, _ = make_parallel(dl_model, gpu_count)
parallelized = True
else:
parallelized = False
if featurewise_center:
preprocess_input = None
# Sweep the whole images and classify patches.
def const_filename(pat, side, view):
basename = '_'.join([pat, side, view]) + '.png'
return os.path.join(img_folder, basename)
print "Generate prob heatmaps"; sys.stdout.flush()
heatmaps = []
cases_seen = 0
nb_cases = len(df.index.unique())
for i, (pat,side) in enumerate(df.index.unique()):
## DEBUG ##
#if i >= 10:
# break
## DEBUG ##
cancer = df.loc[pat].loc[side]['cancer']
cc_fn = const_filename(pat, side, 'CC')
if os.path.isfile(cc_fn):
if fprop_mode:
cc_x = read_img_for_pred(
cc_fn, equalize_hist=equalize_hist, data_format=data_format,
dup_3_channels=True,
transformer=imgen.random_transform,
standardizer=imgen.standardize,
target_size=img_size, target_scale=img_scale,
rescale_factor=rescale_factor)
cc_x = cc_x.reshape((1,) + cc_x.shape)
cc_hm = dl_model.predict_on_batch(cc_x)[0]
# import pdb; pdb.set_trace()
else:
cc_hm = get_prob_heatmap(
cc_fn, img_height, img_scale, patch_size, stride,
dl_model, batch_size, featurewise_center=featurewise_center,
featurewise_mean=featurewise_mean, preprocess=preprocess_input,
parallelized=parallelized, equalize_hist=equalize_hist)
else:
cc_hm = None
mlo_fn = const_filename(pat, side, 'MLO')
if os.path.isfile(mlo_fn):
if fprop_mode:
mlo_x = read_img_for_pred(
mlo_fn, equalize_hist=equalize_hist, data_format=data_format,
dup_3_channels=True,
transformer=imgen.random_transform,
standardizer=imgen.standardize,
target_size=img_size, target_scale=img_scale,
rescale_factor=rescale_factor)
mlo_x = mlo_x.reshape((1,) + mlo_x.shape)
mlo_hm = dl_model.predict_on_batch(mlo_x)[0]
else:
mlo_hm = get_prob_heatmap(
mlo_fn, img_height, img_scale, patch_size, stride,
dl_model, batch_size, featurewise_center=featurewise_center,
featurewise_mean=featurewise_mean, preprocess=preprocess_input,
parallelized=parallelized, equalize_hist=equalize_hist)
else:
mlo_hm = None
heatmaps.append({'patient_id':pat, 'side':side, 'cancer':cancer,
'cc':cc_hm, 'mlo':mlo_hm})
print "scored %d/%d cases" % (i + 1, nb_cases)
sys.stdout.flush()
print "Done."
# Save the result.
print "Saving result to external files.",
sys.stdout.flush()
pickle.dump(heatmaps, open(out, 'w'))
print "Done."
if __name__ == '__main__':
parser = argparse.ArgumentParser(description="heatmap scoring")
parser.add_argument("img_folder", type=str)
parser.add_argument("dl_state", type=str)
parser.add_argument("--fprop-mode", dest="fprop_mode", action="store_true")
parser.add_argument("--no-fprop-mode", dest="fprop_mode", action="store_false")
parser.set_defaults(fprop_mode=False)
parser.add_argument("--img-size", "-is", dest="img_size", nargs=2, type=int, default=[1152, 896])
parser.add_argument("--img-height", "-ih", dest="img_height", type=int, default=None)
parser.add_argument("--no-img-height", dest="img_height", action="store_const", const=None)
parser.add_argument("--img-scale", "-ic", dest="img_scale", type=float, default=None)
parser.add_argument("--no-img-scale", "-nic", dest="img_scale", action="store_const", const=None)
parser.add_argument("--rescale-factor", dest="rescale_factor", type=float, default=None)
parser.add_argument("--no-rescale-factor", dest="rescale_factor", action="store_const", const=None)
parser.add_argument("--equalize-hist", dest="equalize_hist", action="store_true")
parser.add_argument("--no-equalize-hist", dest="equalize_hist", action="store_false")
parser.set_defaults(equalize_hist=False)
parser.add_argument("--featurewise-center", dest="featurewise_center", action="store_true")
parser.add_argument("--no-featurewise-center", dest="featurewise_center", action="store_false")
parser.set_defaults(featurewise_center=False)
parser.add_argument("--featurewise-mean", dest="featurewise_mean", type=float, default=71.8)
parser.add_argument("--net", dest="net", type=str, default="vgg19")
parser.add_argument("--batch-size", dest="batch_size", type=int, default=128)
parser.add_argument("--patch-size", dest="patch_size", type=int, default=256)
parser.add_argument("--stride", dest="stride", type=int, default=8)
parser.add_argument("--avg-pool-size", dest="avg_pool_size", nargs=2, type=int, default=[7, 7])
parser.add_argument("--hm-strides", dest="hm_strides", nargs=2, type=int, default=[1, 1])
parser.add_argument("--pat-csv", dest="pat_csv", type=str, default="./full_img/pat.csv")
parser.add_argument("--pat-list", dest="pat_list", type=str, default=None)
parser.add_argument("--no-pat-list", dest="pat_list", action="store_const", const=None)
parser.add_argument("--out", dest="out", type=str, default="./output/prob_heatmap.pkl")
args = parser.parse_args()
run_opts = dict(
fprop_mode=args.fprop_mode,
img_size=args.img_size,
img_height=args.img_height,
img_scale=args.img_scale,
rescale_factor=args.rescale_factor,
equalize_hist=args.equalize_hist,
featurewise_center=args.featurewise_center,
featurewise_mean=args.featurewise_mean,
net=args.net,
batch_size=args.batch_size,
patch_size=args.patch_size,
stride=args.stride,
avg_pool_size=args.avg_pool_size,
hm_strides=args.hm_strides,
pat_csv=args.pat_csv,
pat_list=args.pat_list,
out=args.out,
)
print "\n"
print "img_folder=%s" % (args.img_folder)
print "dl_state=%s" % (args.dl_state)
print "\n>>> Model training options: <<<\n", run_opts, "\n"
run(args.img_folder, args.dl_state, **run_opts)