-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcalculate_metric.py
174 lines (151 loc) · 5.71 KB
/
calculate_metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
'''
calculate the PSNR and SSIM.
same as MATLAB's results
'''
import os
import math
import numpy as np
import cv2
import glob
from sewar.full_ref import sam, uqi, scc
def main():
# Configurations
# GT - Ground-truth;
# Gen: Generated / Restored / Recovered images
folder_GT = 'G:\datasets\yaogan\dataset/UCMerced-dataset/test\HR_x4'
folder_Gen = '../experiment/results\HAUNETx4_UCMerced'
crop_border = 4 # same with scale
suffix = '' # suffix for Gen images
test_Y = False # True: test Y channel only; False: test RGB channels
PSNR_all = []
SSIM_all = []
SAM_all = []
QI_all = []
SCC_all = []
img_list = sorted(glob.glob(folder_GT + '/*'))
if test_Y:
print('Testing Y channel.')
else:
print('Testing RGB channels.')
for i, img_path in enumerate(img_list):
base_name = os.path.splitext(os.path.basename(img_path))[0]
im_GT = cv2.imread(img_path) / 255.
im_Gen = cv2.imread(os.path.join(folder_Gen, base_name + suffix + '.tif')) / 255.
if test_Y and im_GT.shape[2] == 3: # evaluate on Y channel in YCbCr color space
im_GT_in = bgr2ycbcr(im_GT)
im_Gen_in = bgr2ycbcr(im_Gen)
else:
im_GT_in = im_GT
im_Gen_in = im_Gen
# crop borders
if crop_border == 0:
cropped_GT = im_GT_in
cropped_Gen = im_Gen_in
else:
if im_GT_in.ndim == 3:
cropped_GT = im_GT_in[crop_border:-crop_border, crop_border:-crop_border, :]
cropped_Gen = im_Gen_in[crop_border:-crop_border, crop_border:-crop_border, :]
elif im_GT_in.ndim == 2:
cropped_GT = im_GT_in[crop_border:-crop_border, crop_border:-crop_border]
cropped_Gen = im_Gen_in[crop_border:-crop_border, crop_border:-crop_border]
else:
raise ValueError('Wrong image dimension: {}. Should be 2 or 3.'.format(im_GT_in.ndim))
# calculate PSNR and SSIM
# PSNR = calculate_psnr(cropped_GT * 255, cropped_Gen * 255)
PSNR = calculate_rgb_psnr(cropped_GT * 255, cropped_Gen * 255)
SSIM = calculate_ssim(cropped_GT * 255, cropped_Gen * 255)
SAM = sam(cropped_GT * 255, cropped_Gen * 255)
QI = uqi(cropped_GT * 255, cropped_Gen * 255)
SCC = scc(cropped_GT * 255, cropped_Gen * 255)
print('{:3d} - {:25}. \tPSNR: {:.6f} dB, \tSSIM: {:.6f}, \tSAM: {:.6f}, \tQI: {:.6f}, \tSCC: {:.6f}'.format(
i + 1, base_name, PSNR, SSIM, SAM, QI, SCC))
PSNR_all.append(PSNR)
SSIM_all.append(SSIM)
SAM_all.append(SAM)
QI_all.append(QI)
SCC_all.append(SCC)
print('Average: PSNR: {:.6f} dB, SSIM: {:.6f}, SAM: {:.6f}, QI: {:.6f}, SCC: {:.6f}'.format(
sum(PSNR_all) / len(PSNR_all),
sum(SSIM_all) / len(SSIM_all),
sum(SAM_all) / len(SAM_all),
sum(QI_all) / len(QI_all),
sum(SCC_all) / len(SCC_all),
))
def calculate_psnr(img1, img2):
# img1 and img2 have range [0, 255]
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
mse = np.mean((img1 - img2) ** 2)
if mse == 0:
return float('inf')
return 20 * math.log10(255.0 / math.sqrt(mse))
def calculate_rgb_psnr(img1, img2):
"""calculate psnr among rgb channel, img1 and img2 have range [0, 255]
"""
n_channels = np.ndim(img1)
sum_psnr = 0
for i in range(n_channels):
this_psnr = calculate_psnr(img1[:, :, i], img2[:, :, i])
sum_psnr += this_psnr
return sum_psnr / n_channels
def ssim(img1, img2):
C1 = (0.01 * 255) ** 2
C2 = (0.03 * 255) ** 2
img1 = img1.astype(np.float64)
img2 = img2.astype(np.float64)
kernel = cv2.getGaussianKernel(11, 1.5)
window = np.outer(kernel, kernel.transpose())
mu1 = cv2.filter2D(img1, -1, window)[5:-5, 5:-5] # valid
mu2 = cv2.filter2D(img2, -1, window)[5:-5, 5:-5]
mu1_sq = mu1 ** 2
mu2_sq = mu2 ** 2
mu1_mu2 = mu1 * mu2
sigma1_sq = cv2.filter2D(img1 ** 2, -1, window)[5:-5, 5:-5] - mu1_sq
sigma2_sq = cv2.filter2D(img2 ** 2, -1, window)[5:-5, 5:-5] - mu2_sq
sigma12 = cv2.filter2D(img1 * img2, -1, window)[5:-5, 5:-5] - mu1_mu2
ssim_map = ((2 * mu1_mu2 + C1) * (2 * sigma12 + C2)) / ((mu1_sq + mu2_sq + C1) *
(sigma1_sq + sigma2_sq + C2))
return ssim_map.mean()
def calculate_ssim(img1, img2):
'''calculate SSIM
the same outputs as MATLAB's
img1, img2: [0, 255]
'''
if not img1.shape == img2.shape:
raise ValueError('Input images must have the same dimensions.')
if img1.ndim == 2:
return ssim(img1, img2)
elif img1.ndim == 3:
if img1.shape[2] == 3:
ssims = []
for i in range(img1.shape[2]):
ssims.append(ssim(img1[..., i], img2[..., i]))
return np.array(ssims).mean()
elif img1.shape[2] == 1:
return ssim(np.squeeze(img1), np.squeeze(img2))
else:
raise ValueError('Wrong input image dimensions.')
def bgr2ycbcr(img, only_y=True):
'''same as matlab rgb2ycbcr
only_y: only return Y channel
Input:
uint8, [0, 255]
float, [0, 1]
'''
in_img_type = img.dtype
img.astype(np.float32)
if in_img_type != np.uint8:
img *= 255.
# convert
if only_y:
rlt = np.dot(img, [24.966, 128.553, 65.481]) / 255.0 + 16.0
else:
rlt = np.matmul(img, [[24.966, 112.0, -18.214], [128.553, -74.203, -93.786],
[65.481, -37.797, 112.0]]) / 255.0 + [16, 128, 128]
if in_img_type == np.uint8:
rlt = rlt.round()
else:
rlt /= 255.
return rlt.astype(in_img_type)
if __name__ == '__main__':
main()