-
Notifications
You must be signed in to change notification settings - Fork 43
/
Copy pathprima.m
491 lines (480 loc) · 23.2 KB
/
prima.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
function [x, fx, exitflag, output] = prima(varargin)
%PRIMA is a package for solving the following generic continuous
% optimization problem without using derivatives:
%
% minimize fun(x)
% s.t. Aineq * x <= bineq,
% Aeq * x = beq,
% lb <= x <= ub,
% cineq(x) <= 0,
% ceq(x) = 0.
%
% In the backend, PRIMA calls the late Professor M. J. D. Powell's algorithms
% UOBYQA, NEWUOA, BOBYQA, LINCOA, and COBYLA.
%
% The interface of PRIMA is the same as that of function FMINCON included
% in the Optimization Toolbox of MATLAB. So PRIMA can be called in the same
% way as calling FMINCON. In addition, PRIMA can be called in some more
% flexible ways that are not allowed by FMINCON.
%
% 1. Basic syntax
%
% The same as FMINCON, the command
%
% x = prima(fun, x0, Aineq, bineq, Aeq, beq, lb, ub, nonlcon)
%
% solves the problem formulated above, where
%
% *** fun is the name or function handle of the objective function; if
% there is no objective function (i.e., we have a feasibility problem),
% then set fun = []
% *** x0 is the starting point; x0 CANNOT be omitted or set to []
% *** Aineq and bineq are the coefficient matrix and right-hand side of
% the linear inequality constraint Aineq * x <= bineq; if there is
% no such constraint, set Aineq = [], bineq = []
% *** Aeq and beq are the coefficient matrix and right-hand side of the
% linear equality constraint Aeq * x = beq; if there is no such
% constraint, set Aeq = [], beq = []
% *** lb and ub, which are vectors of the same length as x, are the
% lower and upper bound in the bound constraint lb <= x <= ub;
% set lb = [] if no lower bound, and ub = [] if no upper bound
% *** nonlcon is a function that has 1 input x and 2 outputs [cineq, ceq];
% it calculates cineq(x) and ceq(x) for any given x; if the first
% output of nonlcon is [], then there is no inequality constraint
% cineq(x) <= 0; if the second output of nonlcon is [], then there
% is no equality constraint ceq(x) = 0. If there is no nonlinear
% constraint, set nonlcon = []
%
% The function can also be called with more outputs, e.g.,
%
% [x, fx, exitflag, output] = prima(INPUTS)
%
% See "3. Outputs" below for explanations on these outputs.
%
% 2. Flexible syntax
%
% x = prima(fun, x0) solves
% minimize fun(x)
% x = prima(fun, x0, Aineq, bineq) solves
% minimize fun(x) s.t. Aineq * x <= bineq
% x = prima(fun, x0, Aineq, bineq, Aeq, beq) solves
% minimize fun(x) s.t. Aineq * x <= bineq, Aeq * x = beq
% x = prima(fun, x0, Aineq, bineq, Aeq, beq, lb) solves
% minimize fun(x) s.t. Aineq * x <= bineq, Aeq * x = beq, lb <= x
% x = prima(fun, x0, Aineq, bineq, Aeq, beq, lb, ub) solves
% minimize fun(x) s.t. Aineq * x <= bineq, Aeq * x = beq, lb <= x <= ub
% x = prima(fun, x0, nonlcon) solves
% minimize fun(x) s.t. cineq(x) <= 0, ceq(x) = 0
% x = prima(fun, x0, Aineq, bineq, nonlcon) solves
% minimize fun(x) s.t. Aineq * x <= bineq, cineq(x) <= 0, ceq(x) = 0
% x = prima(fun, x0, Aineq, bineq, Aeq, beq, nonlcon) solves
% minimize fun(x) s.t. Aineq * x <= bineq, Aeq * x = beq, cineq(x) <= 0, ceq(x) = 0
% x = prima(fun, x0, Aineq, bineq, Aeq, beq, lb, nonlcon) solves
% minimize fun(x) s.t. Aineq * x <= bineq, Aeq * x = beq, lb <= x, cineq(x) <= 0, ceq(x) = 0
%
% information = prima(request) returns information about the package
% according to the information-requesting string "request", which can
% be 'about', 'author', 'email', 'url', 'maintainer', 'credits',
% 'copyright', 'license', 'version', 'date', 'status', 'message',
% or 'information'.
%
% 3. Outputs
%
% *** x is the approximate solution to the optimization problem
% *** fx is fun(x)
% *** exitflag is an integer indicating why PRIMA or its backend solver returns;
% the possible values are
% 0: the lower bound for the trust region radius is reached
% 1: the target function value is achieved
% 2: a trust region step failed to reduce the quadratic model (possible only in classical mode)
% 3: the objective function has been evaluated maxfun times
% 7: rounding errors become severe in the Fortran code
% 8: a linear constraint has zero gradient
% 13: all variables are fixed by the constraints
% 14: a linear feasibility problem received and solved
% 15: a linear feasibility problem received but not solved
% 20: the trust region iteration has been performed for 2*maxfun times
% -1: NaN occurs in x (possible only in the classical mode)
% -2: the objective/constraint function returns an Inf/NaN value (possible only in classical
% mode)
% -3: NaN occurs in the models (possible only in classical mode)
% -4: constraints are infeasible
% *** output is a structure with the following fields:
% funcCount: number of function evaluations
% nlcineq: cineq(x) (if there is nonlcon)
% nlceq: ceq(x) (if there is nonlcon)
% constrviolation: constrviolation of x (if problem is constrained)
% xhist: history of iterates (if options.output_xhist = true)
% fhist: history of function values
% chist: history of constraint violations
% nlcihist: history of nonlinear inequality constraint values (if
% options.output_nlchist = true)
% nlcehist: history of nonlinear equality constraint values (if
% options.output_nlchist = true)
% solver: backend solver that does the computation
% message: return message
% warnings: a cell array that records all the warnings raised
% during the computation
%
% 4. Options
%
% The same as FMINCON, PRIMA accepts options passed by a structure.
% Such a structure should be passed as an additional input appended to
% the end of the input list in the basic syntax or the flexible syntax.
%
% The options include
% *** maxfun: maximal number of function evaluations; default: 500*length(x0)
% *** ftarget: target function value; default: -Inf
% *** ctol (only if classical = false; see below): tolerance for the constraint
% validation for constrained problems; default: machine epsilon
% *** rhobeg: initial trust region radius; typically, rhobeg should be in
% the order of one tenth of the greatest expected change to a variable;
% rhobeg should be positive; default: 1 if the problem is not scaled
% (but min(1, min(ub-lb)/4) if the solver is BOBYQA), 0.5 if the problem
% is scaled
% *** rhoend: final trust region radius; rhoend reflects the precision
% of the approximate solution obtained by PRIMA; rhoend should be
% positive and not larger than rhobeg; default: 1e-6
% *** npt: (only for NEWUOA, BOBYQA, LINCOA) number of interpolation
% points for constructing a model; default: 2*length(x0)+1
% *** solver: a string indicating which solver to use; possible values are:
% 'uobyqa', 'newuoa' (for unconstrained problems),
% 'bobyqa' (for bound-constrained or unconstrained problems),
% 'lincoa' (for linearly-constrained or bound-constrained or
% unconstrained problems),
% 'cobyla' (for general constrained or unconstrained problems)
% *** fortran: a boolean value indicating whether to call Fortran code or
% not; default: true
% *** classical: a boolean value indicating whether to call the classical
% version of Powell's Fortran code or not; default: false
% *** eta1, eta2, gamma1, gamma2 (only if classical = false)
% eta1, eta2, gamma1, and gamma2 are parameters in the updating scheme
% of the trust region radius. Roughly speaking, the trust region radius
% is contracted by a factor of gamma1 when the reduction ratio is below
% eta1, and enlarged by a factor of gamma2 when the reduction ratio is
% above eta2. It is required that 0 <= eta1 <= eta2 < 1 and
% 0 < gamma1 < 1 <= gamma2. Normally, eta1 <= 0.25. It is not recommended
% to set eta1 >= 0.5. Default: eta1 = 0.1, eta2 = 0.7, gamma1 = 0.5,
% and gamma2 = 2.
% *** scale: (only for BOBYQA, LINCOA, and COBYLA) a boolean value
% indicating whether to scale the problem according to bounds or not;
% default: false; if the problem is to be scaled, then rhobeg and rhoend
% mentioned above will be used as the initial and final trust region
% radii for the scaled problem
% *** honour_x0: (only for BOBYQA) a boolean value indicating whether to
% respect the user-defined x0 or not; default: false if the user provides
% a rhobeg in (0, Inf), and true otherwise.
% *** iprint: a flag deciding how much information will be printed during
% the computation; possible values are value 0 (default), 1, -1, 2,
% -2, 3, or -3.
% 0: there will be no printing; this is the default;
% 1: a message will be printed to the screen at the return, showing
% the best vector of variables found and its objective function value;
% 2: in addition to 1, at each "new stage" of the computation, a message
% is printed to the screen with the best vector of variables so far
% and its objective function value;
% 3: in addition to 2, each function evaluation with its variables will
% be printed to the screen;
% -1, -2, -3: the same information as 1, 2, 3 will be printed, not to
% the screen but to a file named SOLVER_output.txt; the file will be
% created if it does not exist; the new output will be appended to
% the end of this file if it already exists.
% N.B.:
% iprint = +/-3 can be costly in terms of time and/or space.
% When quiet = true (see below), setting iprint = 1, 2, or 3 is
% the same as setting it to -1, -2, or -3, respectively.
% When classical = true, only iprint = 0 is supported.
% *** quiet: a boolean value indicating whether to keep quiet or not;
% if this flag is set to false or not set, then it affects nothing;
% if it is set to true and iprint = 1, 2, or 3, the effect is the
% same as setting iprint to -1, -2, or -3, respectively; default: true
% *** maxhist: a nonnegative integer controlling how much history will
% be included in the output structure; default: maxfun
% *******************************************************************
% IMPORTANT NOTICE:
% If maxhist is so large that recording the history takes too much memory,
% the Fortran code will reset maxhist to a smaller value. The maximal
% amount of memory defined the Fortran code is 2GB.
% Let L = length(x) + 2*(number of nonlinear constraints). Assume
% that maxfun <= 500*L. Then any problem with L <= 400 is not affected.
% *******************************************************************
% *** output_xhist: a boolean value indicating whether to output the
% history of the iterates; if it is set to true, then the output
% structure will include a field "xhist", which contains the last
% maxhist iterates of the algorithm; default: false
% *** output_nlchist: a boolean value indicating whether to output the
% history of the function values; if it is set to true; then the
% output structure will include fields "nlcihist" and "nlcehist",
% which respectively contain the inequality and equality constraint
% values of the last maxhist iterates of the algorithm; default: false
% *** maxfilt: a nonnegative integer indicating the maximal length of the
% "filter" used for selecting the returned solution; default: 2000
% *** debug: a boolean value indicating whether to debug or not; default: false
% *** chkfunval: a boolean value indicating whether to verify the returned
% function and constraint (if applicable) values or not; default: false
% (if it is true, PRIMA will check whether the returned values of fun and
% nonlcon match fun(x) and nonlcon(x) or not, which costs function/constraint
% evaluations; designed only for debugging)
%
% For example, the following code
%
% options = struct();
% options.maxfun = 50;
% x = prima(@cos, -1, 2, 3, options);
%
% solves
% min cos(x) s.t. 2 * x <= 3
% starting from x0 = -1 with at most 50 function evaluations.
%
% 5. Problem defined by a structure
%
% The same as FMINCON, a problem can be passed to PRIMA by a structure
% PROBLEM containing the following fields:
% PROBLEM.objective, PROBLEM.x0, PROBLEM.Aineq, PROBLEM.bineq,
% PROBLEM.Aeq, PROBLEM.beq, PROBLEM.lb, PROBLEM.ub, PROBLEM.nonlcon,
% PROBLEM.options, where PROBLEM.objective is the function name or
% function handle of the objective function (corresponding to the input
% 'fun' mentioned above), and all the other fields correspond to the
% inputs introduced above with the same names. The backend solver can
% be indicated by either PROBLEM.solver or PROBLEM.options.solver; if
% both fields are defined, then PROBLEM.solver will be followed.
%
% For example, the following code
%
% problem = struct();
% problem.objective = @cos;
% problem.x0 = -1;
% problem.Aineq = 2;
% problem.bineq = 3;
% problem.options.maxfun = 50;
% x = prima(problem);
%
% solves
% min cos(x) s.t. 2 * x <= 3
% starting from x0 = -1 with at most 50 function evaluations.
%
% See also uobyqa, newuoa, bobyqa, lincoa, cobyla.
%
% See www.libprima.net for more information.
%
% Dedicated to the late Professor M. J. D. Powell FRS (1936--2015).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Attribute: public (can be called directly by users)
%
% Remarks:
%
% 1. Public function v.s. private function
% 1.1. Public functions are functions that can be directly called by users.
% They should be either prima or a solver.
% 1.2. Private functions are functions that are not supposed to be called
% by users. They are the preprocessing/postprocessing functions and
% auxiliary functions.
%
% 1. Errors that may be generated by prima
%
% 1.1. Normal error v.s. unexpected error
% A. Normal errors are usually caused by incorrect inputs.
% B. Unexpected errors usually imply bugs in the code. Such errors are
% displayed with 'UNEXPECTED ERROR:', except those generated by mex files.
%
% 1.2. Public errors v.s. private errors
% A. Public errors are designed to be shown to users. The identifier
% of an public error starts with 'PUB_FUN:', where PUB_FUN is a
% public function, i.e., the function that is being called by the user
% (should be either prima or a solver). Thanks to the error-handling
% code in public functions, public errors are displayed in a 'friendly'
% manner as follows:
%
% Error using PUB_FUN (line XXX)
% error message
%
% where the error message is a string starts with 'PUB_FUN:'. If the
% error is not generated in the file of PUB_FUN, then an additional line
% as follows is displayed:
%
% (error generated in FILE, line YYY)
%
% From the user's view point, a public error is an error raised by the
% function that he/she is calling. Therefore, if the user calls prima,
% then PUB_FUN should be prima; if the user calls a solver directly, then
% PUB_FUN should be the solver.
%
% B. Private errors are not expected to be seen by users unless there
% is a bug. All private errors are unexpected errors (but not vice versa).
% The identifier of a private error starts with 'PRI_FUN:', where PRI_FUN
% represents a private function. Private errors are displayed in the
% default manner, showing the detailed call stack trace, which is not so
% friendly but easy to debug.
%
% C. Private functions display errors as is. Public functions catch
% the exceptions thrown by private functions and display public/private
% errors properly.
%
% 2. Warnings that may be raised by prima
% 2.1. All the warnings are considered to be public, i.e., they are
% designed to be shown to the users.
% 2.2. Warnings are displayed without the call stack trace.
%
% 3. probinfo
% !!! TREAT probinfo AS A READONLY VARIABLE AFTER PREPRIMA !!!
% !!! DO NOT CHANGE probinfo AFTER PREPRIMA !!!
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% prima starts
callstack = dbstack;
funname = callstack(1).name; % Name of the current function
% OUTPUT records the information that is produced by the solver and
% intended to pass to postprima.
% OUTPUT should contain at least x, fx, exitflag, funcCount, and constrviolation;
% for internal solvers (solvers from PRIMA), it should also contain fhist, chist, warnings;
% for nonlinearly constrained internal solvers, it should also contain nlcineq and nlceq.
output = struct();
output.warnings = {}; % A cell that records all the warnings
% This version of prima.m produces no warning. However, initializing output.warnings
% is still necessary, as output.warnings is required by postprima.
warning('off', 'backtrace'); % Do not display the stack trace of a warning
maxarg = 10; % Maximal number of inputs
nvararg = length(varargin); % Number of inputs
% Interpret the input.
% Expected inputs: [fun, x0, Aineq, bineq, Aeq, beq, lb, ub, nonlcon, options],
% yet some of them may be omitted
if (nvararg < 1) % Public/normal error
error(sprintf('%s:TooFewInputs', funname), '%s: at least 1 input.', funname);
elseif (nvararg == 1)
% The only input should be either a information-requesting string or
% a problem-defining structure.
args = varargin;
elseif (nvararg >= 2 && nvararg <= maxarg)
% If 2 <= nvararg <= 10 and the last input is a structure or [], then it is the 'options'
if isempty(varargin{end}) || isa(varargin{end}, 'struct')
% If nvararg >= 4 and the second last input is a function, then it is the 'nonlcon'
if (nvararg >= 4) && (ischarstr(varargin{end-1}) || isa(varargin{end-1}, 'function_handle'))
args = [varargin(1:end-2), cell(1, maxarg-nvararg), varargin(end-1:end)]; % 'augment' the inputs to 10 by adding []; args{:} (should have 10 entries) will be the inputs for preprima
% cell(m,n) returns an mxn array of []
else
args = [varargin(1:end-1), cell(1, maxarg-nvararg), varargin(end)];
end
% if nvararg >= 3 and the last input is a function, then it is the 'nonlcon'
elseif (nvararg >= 3) && (ischarstr(varargin{end}) || isa(varargin{end}, 'function_handle'))
args = [varargin(1:end-1), cell(1, maxarg-nvararg-1), varargin(end), {[]}];
else
args = [varargin, cell(1, maxarg-nvararg)];
end
else % Public/normal error
error(sprintf('%s:TooManyInputs', funname), '%s: at most %d inputs.', funname, maxarg);
end
% Preprocess the input
try % preprima and package_info are private functions that may generate public errors; error-handling needed
if (nvararg == 1) && ischarstr(varargin{1})
% If there is only 1 input and it is a string, then it should be
% a string requesting information about the package.
x = package_info(varargin{1});
return % Return immediately
else
[fun, x0, Aineq, bineq, Aeq, beq, lb, ub, nonlcon, options, probinfo] = preprima(args{:});
end
catch exception
if ~isempty(regexp(exception.identifier, sprintf('^%s:', funname), 'once')) % Public error; displayed friendly
error(exception.identifier, '%s\n(error generated in %s, line %d)', exception.message, exception.stack(1).file, exception.stack(1).line);
else % Private error; displayed as is
rethrow(exception);
end
end
if probinfo.infeasible % The problem turned out infeasible during preprima
output.x = x0;
output.fx = fun(output.x);
output.exitflag = -4;
output.funcCount = 1;
if options.output_xhist
output.xhist = output.x;
end
output.fhist = output.fx;
output.constrviolation = probinfo.constrv_x0;
output.chist = output.constrviolation;
output.nlcineq = probinfo.nlcineq_x0;
output.nlceq = probinfo.nlceq_x0;
if options.output_nlchist
output.nlcihist = output.nlcineq;
output.nlcehist = output.nlceq;
end
elseif probinfo.nofreex % x was fixed by the bound constraints during preprima
output.x = probinfo.fixedx_value;
output.fx = fun(output.x);
output.exitflag = 13;
output.funcCount = 1;
if options.output_xhist
output.xhist = output.x;
end
output.fhist = output.fx;
output.constrviolation = probinfo.constrv_fixedx;
output.chist = output.constrviolation;
output.nlcineq = probinfo.nlcineq_fixedx;
output.nlceq = probinfo.nlceq_fixedx;
if options.output_nlchist
output.nlcihist = output.nlcineq;
output.nlcehist = output.nlceq;
end
elseif probinfo.feasibility_problem && ~strcmp(probinfo.refined_type, 'nonlinearly-constrained')
output.x = x0; % preprima has tried to set x0 to a feasible point (but may have failed)
% We could set fx = [], funcCount = 0, and fhist = [] since no function evaluation
% occurred. But then we will have to modify the validation of fx, funcCount,
% and fhist in postprima. To avoid such a modification, we set fx, funcCount,
% and fhist as below and then revise them in postprima.
output.fx = fun(output.x); % preprima has defined a fake objective function
output.funcCount = 1;
if options.output_xhist
output.xhist = output.x;
end
output.fhist = output.fx;
output.constrviolation = probinfo.constrv_x0;
output.chist = output.constrviolation;
output.nlcineq = []; % No nonlinear constraints
output.nlceq = [];
if output.constrviolation <= eps % Did preprima find a feasible point?
output.exitflag = 14;
else
output.exitflag = 15;
end
if options.output_nlchist
output.nlcihist = output.nlcineq;
output.nlcehist = output.nlceq;
end
else
% The problem turns out 'normal' during preprima. Solve it by
% options.solver, which has been defined in preprima.
try
switch lower(options.solver)
case 'uobyqa'
[x, fx, exitflag, output] = uobyqa(fun, x0, options);
case 'newuoa'
[x, fx, exitflag, output] = newuoa(fun, x0, options);
case 'bobyqa'
[x, fx, exitflag, output] = bobyqa(fun, x0, lb, ub, options);
case 'lincoa'
[x, fx, exitflag, output] = lincoa(fun, x0, Aineq, bineq, Aeq, beq, lb, ub, options);
case 'cobyla'
[x, fx, exitflag, output] = cobyla(fun, x0, Aineq, bineq, Aeq, beq, lb, ub, nonlcon, options);
end
catch exception
if ~isempty(regexp(exception.identifier, sprintf('^%s:', funname), 'once')) % Public error; displayed friendly
error(exception.identifier, '%s\n(error generated in %s, line %d)', exception.message, exception.stack(1).file, exception.stack(1).line);
else % Private error; displayed as is
rethrow(exception);
end
end
% Record the results of the solver in OUTPUT
output.x = x;
output.fx = fx;
output.exitflag = exitflag;
end
% Postprocess the result
try % postprima is a private function that may generate public errors; error-handling needed
[x, fx, exitflag, output] = postprima(probinfo, output);
catch exception
if ~isempty(regexp(exception.identifier, sprintf('^%s:', funname), 'once')) % Public error; displayed friendly
error(exception.identifier, '%s\n(error generated in %s, line %d)', exception.message, exception.stack(1).file, exception.stack(1).line);
else % Private error; displayed as is
rethrow(exception);
end
end
% prima ends
return