-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy patheda.R
113 lines (82 loc) · 4.83 KB
/
eda.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
load("C://Users//waliang//Documents//UCSB//third year//pstat 131//modify_data.rda")
# MISSING DATA
merge_con <- merge_con %>%
replace_with_na_all(~.x =="\\N") %>%
filter(season!=2023)
merge_driv <- merge_driv %>%
replace_with_na_all(~.x=="\\N")
# arrange each constructor's result in order throughout a season
# since I plan on using con_sum_pnts as a response variable and con_sum_pnts is an accumulation of con_pnts
# I want to fill out all NA con_sum_pnts using con_pnts
# and vice versa
merge_con1 <- merge_con %>%
arrange(constructorId, season, raceId, round, con_sum_pnts) %>%
mutate(con_sum_pnts = case_when((is.na(con_sum_pnts) & season==lag(season) & is.na(con_pnts)!=TRUE) ~ lag(con_sum_pnts)+con_pnts,
(is.na(con_sum_pnts) & season!=lag(season) & is.na(con_pnts)!=TRUE) ~ con_pnts,
is.na(con_sum_pnts)!=TRUE ~ con_sum_pnts))
merge_con2 <- merge_con1 %>%
arrange(constructorId, season, raceId, round, con_sum_pnts) %>%
mutate(con_pnts = case_when((is.na(con_pnts) & season==lag(season) & is.na(con_sum_pnts)!=TRUE) ~ con_sum_pnts-lag(con_sum_pnts),
(is.na(con_pnts) & season!=lag(season) & is.na(con_sum_pnts)!=TRUE) ~ con_sum_pnts,
is.na(con_pnts)!=TRUE ~ con_pnts))
merge_con3 <- merge_con2 %>%
arrange(constructorId, season, raceId, round, con_sum_pnts) %>%
mutate(con_sum_pnts = case_when((is.na(con_sum_pnts) & season==lag(season) & is.na(con_pnts)!=TRUE) ~ lag(con_sum_pnts)+con_pnts,
(is.na(con_sum_pnts) & season!=lag(season) & is.na(con_pnts)!=TRUE) ~ con_pnts,
is.na(con_sum_pnts)!=TRUE ~ con_sum_pnts))
# MERGE_CON3
# turn continuous variables (that aren't integers already) into integers
merge_con3$con_pnts <- as.integer(merge_con3$con_pnts)
# turn categorical variables (that aren't factors already) into factors
merge_con3$con_nation <- factor(merge_con3$con_nation)
merge_con3$raceId <- factor(merge_con3$raceId)
merge_con3$constructorId <- factor(merge_con3$constructorId)
merge_con3$circuitId <- factor(merge_con3$circuitId)
merge_con3$circ_country <- factor(merge_con3$circ_country)
# DRIV_MERGE
# turn continuous variables (that aren't integers already) into integers
merge_driv$driv_pnts <- as.integer(merge_driv$driv_pnts)
merge_driv$fastestLapTime_rank <- as.integer(merge_driv$fastestLapTime_rank)
merge_driv$fastestLapSpeed <- as.integer(merge_driv$fastestLapSpeed)
merge_driv$avg_lap_time <- as.integer(merge_driv$avg_lap_time)
merge_driv$avg_lap_pos <- as.integer(merge_driv$avg_lap_pos)
merge_driv$dob <- as.integer(merge_driv$dob)
# turn categorical variables (that aren't factors already) into factors
merge_driv$raceId <- factor(merge_driv$raceId)
merge_driv$driverId <- factor(merge_driv$driverId)
merge_driv$constructorId <- factor(merge_driv$constructorId)
merge_driv$circuitId <- factor(merge_driv$circuitId)
merge_driv$circ_country <- factor(merge_driv$circ_country)
merge_driv$nationality <- factor(merge_driv$nationality)
# can't impute constructorId, omit those missing values
merge_driv1 <- merge_driv %>%
filter(!is.na(constructorId)) %>%
filter(!is.na(status)) # removes the <0.1% missing in some of the columns
# EXTRA MISING DATA WORK
merge_driv2 <- merge_driv1 %>%
group_by(driverId, round) %>%
# replace missing driv_standing with the median of the standings the driver gets in that round across seasons
summarise(driv_standing_na = as.integer(median(driv_standing,na.rm=TRUE)))%>%
replace_with_na(replace=list(merge_driv1$driv_standing_na=="Inf")) %>%
replace_with_na(replace=list(merge_driv1$driv_standing_na=="-Inf"))
merge_driv3 <- full_join(merge_driv1, merge_driv2, by=c("driverId","round"))
merge_driv3 <- merge_driv3 %>%
mutate(driv_standing = case_when(is.na(driv_standing) ~ driv_standing_na,
!is.na(driv_standing) ~ driv_standing))
merge_driv4<- merge_driv3 %>%
filter(!is.na(driv_standing))
# distribution of response variables
plot_con<-ggplot(merge_con3, aes(con_pos))+
geom_bar(fill="black", width=0.5)+xlim(1,22)+ylim(0,1100)+
labs(x="Constructor's position in standings",
title="Distribution of Constructor's Position in Standings")+
theme(plot.title = element_text(size=8, face="bold"))
plot_driv <- ggplot(merge_driv3, aes(driv_pnts))+
geom_bar(fill="black",width=0.5)+ xlim(0,50)+ylim(0,1200)+
labs(x="Driver's points earned at each race",
title="Distribution of Driver's Points Earned at Each Race")+
theme(plot.title = element_text(size=7, face="bold"))
save(merge_con, merge_con1, merge_con2,merge_con3,plot_con,
plot_driv, merge_driv, merge_driv1, merge_driv2,
merge_driv3, merge_driv4,
file="eda.rda")