-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
46 lines (36 loc) · 1.31 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
# Train
import logging
from typing import Optional, Sequence
import numpy as np
import loss
import optimizer
from layers import layer
class Trainer:
def __init__(self,
layers: Sequence[layer.Layer],
loss_: Optional[loss.Loss] = None):
self._layers = layers
self._loss = loss_ or loss.MSELoss()
def train(self, inputs: np.ndarray, targets: np.ndarray, steps: int,
optimizer_: optimizer.Optimizer) -> None:
for i in range(steps):
print('Step: ', i)
logging.info('Running forward pass')
y = inputs
for layer_ in self._layers:
logging.info('Running Layer ', layer_.name)
y = layer_(y)
l = self._loss(y, targets)
print('Loss: ', l)
logging.info('Running backward pass')
dy = self._loss(backprop=True)
for layer_ in reversed(self._layers):
logging.info('Running Layer ', layer_.name)
dy = layer_(dy, backprop=True, optimizer_=optimizer_)
logging.info(dy.shape)
def eval(self, inputs: np.ndarray, targets: np.ndarray) -> None:
y = inputs
for layer_ in self._layers:
y = layer_(y)
l = self._loss(y, targets)
print('Loss: ', l)