-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquickhull.pyx
37 lines (34 loc) · 1.11 KB
/
quickhull.pyx
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
# -*- coding: utf-8 -*-
# distutils: language=c++
"""
Created on Thu May 4 23:32:02 2023
@author: lbaru
"""
import numpy as np
cimport numpy as np
def find_convex_hull(double[:, ::1] points):
cdef int n = points.shape[0]
cdef np.ndarray[np.int_t, ndim=1] sorted_points = np.empty(n, dtype=np.int_)
for i in range(n):
sorted_points[i] = i
cdef int[: ] lower_hull = [sorted_points[0]]
cdef int[: ] upper_hull = [sorted_points[0]]
cdef int point
for i in range(1, n):
point = sorted_points[i]
while len(lower_hull) > 1 and np.cross(
points[lower_hull[-1]] - points[lower_hull[-2]],
points[point] - points[lower_hull[-2]]
) <= 0:
lower_hull.pop()
lower_hull.append(point)
while len(upper_hull) > 1 and np.cross(
points[upper_hull[-1]] - points[upper_hull[-2]],
points[point] - points[upper_hull[-2]]
) >= 0:
upper_hull.pop()
upper_hull.append(point)
cdef int[: ] convex_hull = np.concatenate(
(lower_hull, upper_hull[-2:0:-1])
)
return convex_hull