-
Notifications
You must be signed in to change notification settings - Fork 13
/
Copy pathconfig.py
38 lines (30 loc) · 2.08 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
# coding=utf-8
import os
# model hyper-parameters
device = 'cpu' # 'cpu' or 'cuda'
rand_seed = 314
model_name = 'CNN-LSTM_evi_lsp' # ['CNN', 'CNN-LSTM_evi', 'CNN-LSTM_lsp', 'CNN-LSTM_evi_lsp', 'LSTM_evi', 'LSTM_lsp', 'LSTM_evi_lsp']
# hyper-parameter of CNN
num_channels = 10
# hyper-parameter of LSTM (small values for parameters for initializing the model training)
lstm_input_size_evi = 1 # feature_size of EVI time series
lstm_input_size_lsp = 11 # feature_size of LSP (phenology) time series
lstm_hidden_size = 8 # hidden size and layers do not need to be large for LSTM
lstm_num_layers = 2
lstm_dropout = 0
# hyper-parameter for training
lr = 1e-3
batch_size = 32
epochs = 1000 # need to consider early stopping to avoid overfitting
eval_interval = 10
data_dir = './data/'
log_dir = './log/'
f_df_samples = os.path.join(data_dir, 'samples_data.csv') # user need to assign the filename of the sample data (including columns of the target soil property, e.g. soil organic carbon values)
target_var_name = 'soc' # the column name for the target property (y) that needs to be predicted
f_data_DL_common = os.path.join(data_dir, 'samples_window_common.pkl') # the pickle file of the input data (X) for CNN (i.e. climate and topographic data with spatially contextual information)
f_data_DL_evi = os.path.join(data_dir, 'samples_ts_evi.pkl') # the pickle file of the input data (X) for LSTM (i.e. EVI data with temporally dynamic information)
f_data_DL_lsp = os.path.join(data_dir, 'samples_ts_lsp.pkl') # the pickle file of the input data (X) for LSTM (i.e. phenological data with temporally dynamic information)
train_test_id = 1
f_train_index = os.path.join(data_dir, 'train_test_idx', 'train_{}.pkl'.format(train_test_id)) # the pickle file of the sample id list for the training set
f_test_index = os.path.join(data_dir, 'train_test_idx', 'test_{}.pkl'.format(train_test_id)) # the pickle file of the sample id list for the testing set
model_save_pth = './model/{}_{}.pth'.format(model_name, train_test_id) # the save path of the model parameters