-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathplanning_experiment.jl
79 lines (68 loc) · 3.17 KB
/
planning_experiment.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
struct PlanningExperiment <: ExperimentType end
name(::PlanningExperiment) = "planning"
result_df_template(::PlanningExperiment) = DataFrame(run_id=Int[], cost=Float64[], dmin=Float64[],
player_id=Int[], ego=String[])
"Run a single simulation of a planner."
function run_experiment(::PlanningExperiment, ego_basetype=FixedSeedController,
problem_data=setup_problem(3), rng=MersenneTwister(1),
run_id=-1; kwargs...)
# setup controllers
uids = uindex(nominal_game(problem_data.d_eval))
uid_ego = first(uids)
uid_eval = vcat(uids[2:end]...)
ego_controller = ego_basetype{uid_ego}()
eval_controller = FixedSeedController{uid_eval}()
# run planner
traj_cl, _, true_game = run_simulation(problem_data..., eval_controller,
ego_controller, rng; kwargs...)
# post processing / compsing result for dataframe
#TODO: think about what is the right cost to use here?
costs = cost(true_game, traj_cl)
mds = mindist(traj_cl, xyindex(true_game))
return [(run_id=run_id, cost=c, dmin=minimum(mds[:, i]), player_id=i,
ego=name(ego_controller, problem_data))
for (i, c) in enumerate(costs)]
end
"Create a violin plot with a transparant box plot on top."
function boxviolin(df::DataFrame, xkey::Symbol, ykey::Symbol; group::Symbol,
range::Real=1.5, kwargs...)
plts = []
cmin, cmax = Inf, -Inf
for (i, g) in enumerate(unique(df[:, group]))
gcolor = colorcode(string(g))
dfg = filter(df) do row
row[group] == g
end
dfg_trunc = DataFrame()
for xki in unique(dfg[:, xkey])
dfg_xki = filter(dfg) do row
row[xkey] == xki
end
q1, q3 = quantile(dfg_xki[:, ykey], (0.25, 0.75))
iQR = q3-q1
plow, phigh = quantile(dfg_xki[:, ykey], (0.02, 0.98))
cpmin = min(q1-range*iQR, plow)
cpmax = max(q3+range*iQR, phigh)
dfg_xki_filtered = filter(dfg_xki) do row
cpmin <= row[ykey] <= cpmax
end
dfg_trunc = vcat(dfg_trunc, dfg_xki_filtered)
end
cmin = min(cmin, minimum(dfg_trunc[:, ykey]))
cmax = max(cmax, maximum(dfg_trunc[:, ykey]))
# density truncated to whisker range
p = violin(dfg_trunc[:, xkey], dfg_trunc[:, ykey]; title="$(id2figchar(i)) $(string(g))",
xlabel=string(xkey), ylabel=string(ykey), color=gcolor)
boxplot!(p, dfg[:, xkey], dfg[:, ykey]; alpha=0.5, range=range,
outliers=false, color=gcolor)
push!(plts, p)
end
cmin = round(cmin, RoundDown; digits=-2)
cmax = round(cmax, RoundUp; digits=-2)
return plot(plts...; layout=(1, length(plts)), link=:all, ylims=(cmin, cmax), legend=false, kwargs...)
end
function visualize(experiment_type::PlanningExperiment, df::DataFrame; kwargs...)
np = maximum(df[:, :player_id])
boxviolin(df, :player_id, :cost; group=:ego, size=(600,300), xlabel="player", ylabel="cost",
xticks=([1:np;], ["P$i" for i in 1:np]), kwargs...)
end