-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathDEMO_GEDI_orbit_prediction.sh
executable file
·38 lines (29 loc) · 1.34 KB
/
DEMO_GEDI_orbit_prediction.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
#!/bin/bash
# ----- CONFIGURATION -----
# path to base directory with model_XX subdirectories
ensemble_dir=demo_data/GEDI_BDL_demo/output_demo/testfold_0/
model_name='SimpleResNet_8blocks'
n_models=10
batch_size=8192 # Note: Reduce the batch size if the GPU is out of memory.
# set output directory for predictions
prediction_dir='output_demo_orbit_prediction'
# NOTE that in predict.py:
# if prediction_dir is None:
# args.prediction_dir = os.path.dirname(args.file_path_L1B).replace('/L1B', '/pred_RH98')
# set L1B file
file_path_L1B=demo_data/GEDI_BDL_demo/DEMO_orbit_files/L1B/GEDI01_B_2019224233051_O03775_T03020_02_003_01.h5
# set corresponding L2A file (used for quality filtering)
file_path_L2A=demo_data/GEDI_BDL_demo/DEMO_orbit_files/L2A/processed_GEDI02_A_2019224233051_O03775_T03020_02_001_01.h5
echo L1B_path:
echo ${file_path_L1B}
echo L2A_path:
echo ${file_path_L2A}
echo output directory:
echo ${prediction_dir}
python3 torch_code/predict.py --ensemble_dir=${ensemble_dir} \
--n_models=${n_models} \
--batch_size=${batch_size} \
--file_path_L1B=${file_path_L1B} \
--file_path_L2A=${file_path_L2A} \
--prediction_dir=${prediction_dir} \
--model_name=${model_name}