-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathmodel.py
501 lines (452 loc) · 23.6 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
"""
Copyright (c) Microsoft Corporation.
Licensed under the MIT license.
Pytorch modules
some classes are modified from HuggingFace
(/~https://github.com/huggingface/transformers)
"""
import copy
import json
import logging
from io import open
import torch
from torch import nn
from apex.normalization.fused_layer_norm import FusedLayerNorm
import torch.nn.functional as F
from .layer import BertLayer, BertPooler
from utils.heatmap import plot_attention_headmap
import pdb
import sys
import numpy as np
import traceback
logger = logging.getLogger(__name__)
class UniterConfig(object):
"""Configuration class to store the configuration of a `UniterModel`.
"""
def __init__(self,
vocab_size_or_config_json_file,
hidden_size=768,
num_hidden_layers=12,
num_attention_heads=12,
intermediate_size=3072,
hidden_act="gelu",
hidden_dropout_prob=0.1,
attention_probs_dropout_prob=0.1,
max_position_embeddings=512,
type_vocab_size=2,
initializer_range=0.02):
"""Constructs UniterConfig.
Args:
vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in
`UniterModel`.
hidden_size: Size of the encoder layers and the pooler layer.
num_hidden_layers: Number of hidden layers in the Transformer
encoder.
num_attention_heads: Number of attention heads for each attention
layer in the Transformer encoder.
intermediate_size: The size of the "intermediate" (i.e.
feed-forward) layer in the Transformer encoder.
hidden_act: The non-linear activation function (function or string)
in the encoder and pooler. If string, "gelu", "relu" and
"swish" are supported.
hidden_dropout_prob: The dropout probabilitiy for all fully
connected layers in the embeddings, encoder, and pooler.
attention_probs_dropout_prob: The dropout ratio for the attention
probabilities.
max_position_embeddings: The maximum sequence length that this
model might ever be used with. Typically set this to something
large just in case (e.g., 512 or 1024 or 2048).
type_vocab_size: The vocabulary size of the `token_type_ids` passed
into `UniterModel`.
initializer_range: The sttdev of the truncated_normal_initializer
for initializing all weight matrices.
"""
if isinstance(vocab_size_or_config_json_file, str):
with open(vocab_size_or_config_json_file,
"r", encoding='utf-8') as reader:
json_config = json.loads(reader.read())
for key, value in json_config.items():
self.__dict__[key] = value
elif isinstance(vocab_size_or_config_json_file, int):
self.vocab_size = vocab_size_or_config_json_file
self.hidden_size = hidden_size
self.num_hidden_layers = num_hidden_layers
self.num_attention_heads = num_attention_heads
self.hidden_act = hidden_act
self.intermediate_size = intermediate_size
self.hidden_dropout_prob = hidden_dropout_prob
self.attention_probs_dropout_prob = attention_probs_dropout_prob
self.max_position_embeddings = max_position_embeddings
self.type_vocab_size = type_vocab_size
self.initializer_range = initializer_range
else:
raise ValueError("First argument must be either a vocabulary size "
"(int) or the path to a pretrained model config "
"file (str)")
@classmethod
def from_dict(cls, json_object):
"""Constructs a `UniterConfig` from a
Python dictionary of parameters."""
config = UniterConfig(vocab_size_or_config_json_file=-1)
for key, value in json_object.items():
config.__dict__[key] = value
return config
@classmethod
def from_json_file(cls, json_file):
"""Constructs a `UniterConfig` from a json file of parameters."""
with open(json_file, "r", encoding='utf-8') as reader:
text = reader.read()
return cls.from_dict(json.loads(text))
def __repr__(self):
return str(self.to_json_string())
def to_dict(self):
"""Serializes this instance to a Python dictionary."""
output = copy.deepcopy(self.__dict__)
return output
def to_json_string(self):
"""Serializes this instance to a JSON string."""
return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n"
class UniterPreTrainedModel(nn.Module):
""" An abstract class to handle weights initialization and
a simple interface for dowloading and loading pretrained models.
"""
def __init__(self, config, *inputs, **kwargs):
super().__init__()
if not isinstance(config, UniterConfig):
raise ValueError(
"Parameter config in `{}(config)` should be an instance of "
"class `UniterConfig`. To create a model from a Google "
"pretrained model use "
"`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
self.__class__.__name__, self.__class__.__name__
))
self.config = config
def init_weights(self, module):
""" Initialize the weights.
"""
if isinstance(module, (nn.Linear, nn.Embedding)):
# Slightly different from the TF version which uses
# truncated_normal for initialization
# cf /~https://github.com/pytorch/pytorch/pull/5617
module.weight.data.normal_(mean=0.0,
std=self.config.initializer_range)
elif isinstance(module, FusedLayerNorm):
module.bias.data.zero_()
module.weight.data.fill_(1.0)
if isinstance(module, nn.Linear) and module.bias is not None:
module.bias.data.zero_()
@classmethod
def from_pretrained(cls, config_file, state_dict, *inputs, **kwargs):
"""
Instantiate a UniterPreTrainedModel from a pre-trained model file or a
pytorch state dict.
Params:
config_file: config json file
state_dict: an state dictionnary
*inputs, **kwargs: additional input for the specific Uniter class
"""
# Load config
config = UniterConfig.from_json_file(config_file)
logger.info("Model config {}".format(config))
# Instantiate model.
model = cls(config, *inputs, **kwargs)
# Load from a PyTorch state_dict
old_keys = []
new_keys = []
for key in state_dict.keys():
new_key = None
if 'gamma' in key:
new_key = key.replace('gamma', 'weight')
if 'beta' in key:
new_key = key.replace('beta', 'bias')
if new_key:
old_keys.append(key)
new_keys.append(new_key)
for old_key, new_key in zip(old_keys, new_keys):
state_dict[new_key] = state_dict.pop(old_key)
missing_keys = []
unexpected_keys = []
error_msgs = []
# copy state_dict so _load_from_state_dict can modify it
metadata = getattr(state_dict, '_metadata', None)
state_dict = state_dict.copy()
if metadata is not None:
state_dict._metadata = metadata
def load(module, prefix=''):
local_metadata = ({} if metadata is None
else metadata.get(prefix[:-1], {}))
module._load_from_state_dict(
state_dict, prefix, local_metadata, True, missing_keys,
unexpected_keys, error_msgs)
for name, child in module._modules.items():
if child is not None:
load(child, prefix + name + '.')
start_prefix = ''
if not hasattr(model, 'bert') and any(s.startswith('bert.')
for s in state_dict.keys()):
start_prefix = 'bert.'
load(model, prefix=start_prefix)
if len(missing_keys) > 0:
logger.info("Weights of {} not initialized from "
"pretrained model: {}".format(
model.__class__.__name__, missing_keys))
if len(unexpected_keys) > 0:
logger.info("Weights from pretrained model not used in "
"{}: {}".format(
model.__class__.__name__, unexpected_keys))
if len(error_msgs) > 0:
raise RuntimeError('Error(s) in loading state_dict for '
'{}:\n\t{}'.format(
model.__class__.__name__,
"\n\t".join(error_msgs)))
return model
class UniterTextEmbeddings(nn.Module):
def __init__(self, config):
super().__init__()
self.word_embeddings = nn.Embedding(config.vocab_size,
config.hidden_size, padding_idx=0)
self.position_embeddings = nn.Embedding(config.max_position_embeddings,
config.hidden_size)
self.token_type_embeddings = nn.Embedding(config.type_vocab_size,
config.hidden_size)
# self.LayerNorm is not snake-cased to stick with TensorFlow model
# variable name and be able to load any TensorFlow checkpoint file
self.LayerNorm = FusedLayerNorm(config.hidden_size, eps=1e-12)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, input_ids, position_ids, token_type_ids=None):
if token_type_ids is None:
token_type_ids = torch.zeros_like(input_ids)
words_embeddings = self.word_embeddings(input_ids)
position_embeddings = self.position_embeddings(position_ids)
token_type_embeddings = self.token_type_embeddings(token_type_ids)
embeddings = (words_embeddings
+ position_embeddings
+ token_type_embeddings)
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class UniterImageEmbeddings(nn.Module):
def __init__(self, config, img_dim):
super().__init__()
self.img_linear = nn.Linear(img_dim, config.hidden_size)
self.img_layer_norm = FusedLayerNorm(config.hidden_size, eps=1e-12)
self.pos_layer_norm = FusedLayerNorm(config.hidden_size, eps=1e-12)
self.pos_linear = nn.Linear(7, config.hidden_size)
self.mask_embedding = nn.Embedding(2, img_dim, padding_idx=0)
# tf naming convention for layer norm
self.LayerNorm = FusedLayerNorm(config.hidden_size, eps=1e-12)
self.dropout = nn.Dropout(config.hidden_dropout_prob)
def forward(self, img_feat, img_pos_feat, type_embeddings, img_masks=None):
if img_masks is not None:
self.mask_embedding.weight.data[0, :].fill_(0)
mask = self.mask_embedding(img_masks.long())
img_feat = img_feat + mask
transformed_im = self.img_layer_norm(self.img_linear(img_feat))
transformed_pos = self.pos_layer_norm(self.pos_linear(img_pos_feat))
embeddings = transformed_im + transformed_pos + type_embeddings
embeddings = self.LayerNorm(embeddings)
embeddings = self.dropout(embeddings)
return embeddings
class UniterEncoder(nn.Module):
def __init__(self, config):
super().__init__()
layer = BertLayer(config)
self.layer = nn.ModuleList([copy.deepcopy(layer)
for _ in range(config.num_hidden_layers)])
self.KLDivLoss = nn.KLDivLoss(reduction='batchmean')
def get_attention_probs(self, layer_module, hidden_states, attn_mask, row_b, row_l, col_b=None, col_l=None):
attn = layer_module.attention.self.get_attention_probs(hidden_states,
attn_mask) # [sample_num, attn_head_num, ?, ?]
attn = torch.mul(attn, attn_mask)
attn = torch.narrow(attn, 2, row_b, row_l)
if col_b is None and col_l is None:
col_b, col_l = row_b, row_l
attn = torch.narrow(attn, 3, col_b, col_l)
attn = torch.mean(attn, dim=1)
return attn
def iais_distributed(self, txt_attn, img_attn, t2i_attn, i2t_attn, modal):
if modal == 'L':
pseudo_txt_attn = torch.matmul(t2i_attn, i2t_attn)
iais_loss = self.KLDivLoss(torch.log(txt_attn + 1e-6), pseudo_txt_attn) + self.KLDivLoss(
torch.log(pseudo_txt_attn + 1e-6), txt_attn)
elif modal == 'V':
pseudo_img_attn = torch.matmul(i2t_attn, t2i_attn)
iais_loss = self.KLDivLoss(torch.log(img_attn + 1e-6), pseudo_img_attn) + self.KLDivLoss(
torch.log(pseudo_img_attn + 1e-6), img_attn)
else:
raise ValueError('error modal')
return iais_loss
def iais_singular(self, txt_attn, img_attn, cross_attn, length, modal):
index = cross_attn.argmax(-1).detach().cpu().numpy().tolist()
rows = [[i] * length for i in index]
cols = [index] * length
if modal == 'L':
pseudo_txt_attn = nn.Softmax(dim=-1)(img_attn[rows, cols])
iais_loss = self.KLDivLoss(txt_attn.log(), pseudo_txt_attn) + self.KLDivLoss(pseudo_txt_attn.log(),
txt_attn)
elif modal == 'V':
pseudo_img_attn = nn.Softmax(dim=-1)(txt_attn[rows, cols])
iais_loss = self.KLDivLoss(img_attn.log(), pseudo_img_attn) + self.KLDivLoss(pseudo_img_attn.log(),
img_attn)
else:
raise ValueError('error modal')
return iais_loss
def forward(self, input_, attention_mask, txt_attn_mask=None, img_attn_mask=None,
t2i_attn_mask=None, i2t_attn_mask=None, max_tl=0, max_nbb=0,
output_all_encoded_layers=True, IAIS=False, pairs_num=3):
all_encoder_layers = []
self_attn_loss_per_layer = {}
hidden_states = input_
for i, layer_module in enumerate(self.layer): # every layer_module is a bert_layer
if IAIS and i == len(self.layer) - 1:
gt_indices = torch.tensor(list(range(0, hidden_states.size(0), pairs_num)),
dtype=torch.long, device=hidden_states.device)
hidden_states_gt = hidden_states.index_select(0, gt_indices)
txt_attn = self.get_attention_probs(layer_module, hidden_states_gt, txt_attn_mask, 1,
max_tl - 2) # remove [cls] and [sep]
img_attn = self.get_attention_probs(layer_module, hidden_states_gt, img_attn_mask, max_tl, max_nbb)
t2i_attn = self.get_attention_probs(layer_module, hidden_states_gt, t2i_attn_mask, 1, max_tl - 2,
max_tl,
max_nbb) # [sample_num, max_tl-2, max_nbb]
i2t_attn = self.get_attention_probs(layer_module, hidden_states_gt, i2t_attn_mask, max_tl, max_nbb, 1,
max_tl - 2) # [sample_num, max_nbb, max_tl-2]
self_attn_loss_layer_i = torch.tensor(0, dtype=hidden_states.dtype, device=hidden_states.device)
for j, (input_len, nbb) in enumerate(
zip(txt_attn_mask[:, 0, 1, :].sum(1), img_attn_mask[:, 0, max_tl, :].sum(1))):
input_len, nbb = int(input_len.item()), int(nbb.item())
if IAIS == 'L-singular':
iais_loss = self.iais_singular(txt_attn[j, :input_len, :input_len], img_attn[j, :nbb, :nbb],
t2i_attn[j, :input_len], input_len, 'L')
elif IAIS == 'V-singular':
iais_loss = self.iais_singular(txt_attn[j, :input_len, :input_len], img_attn[j, :nbb, :nbb],
i2t_attn[j, :nbb], nbb, 'V')
elif IAIS == 'L-distributed':
iais_loss = self.iais_distributed(txt_attn[j, :input_len, :input_len], img_attn[j, :nbb, :nbb],
t2i_attn[j, :input_len, :nbb], i2t_attn[j, :nbb, :input_len], 'L')
elif IAIS == 'V-distributed':
iais_loss = self.iais_distributed(txt_attn[j, :input_len, :input_len], img_attn[j, :nbb, :nbb],
t2i_attn[j, :input_len, :nbb], i2t_attn[j, :nbb, :input_len], 'V')
else:
raise ValueError("IAIS must in ['L-distributed', 'V-distributed', 'L-singular', 'V-singular']")
self_attn_loss_layer_i += iais_loss
self_attn_loss_per_layer['self_attn_loss/layer_%s' % i] = self_attn_loss_layer_i / gt_indices.size(0)
self_attn_loss_per_layer['self_attn_loss'] = self_attn_loss_per_layer['self_attn_loss/layer_%s' % i]
hidden_states = layer_module(hidden_states, attention_mask)
if output_all_encoded_layers:
all_encoder_layers.append(hidden_states)
if not output_all_encoded_layers:
all_encoder_layers.append(hidden_states)
if IAIS:
return all_encoder_layers, self_attn_loss_per_layer
else:
return all_encoder_layers
class UniterModel(UniterPreTrainedModel):
""" Modification for Joint Vision-Language Encoding
"""
def __init__(self, config, img_dim):
super().__init__(config)
self.embeddings = UniterTextEmbeddings(config)
self.img_embeddings = UniterImageEmbeddings(config, img_dim)
self.encoder = UniterEncoder(config)
self.pooler = BertPooler(config)
self.apply(self.init_weights)
def _compute_txt_embeddings(self, input_ids, position_ids,
txt_type_ids=None):
output = self.embeddings(input_ids, position_ids, txt_type_ids)
return output
def _compute_img_embeddings(self, img_feat, img_pos_feat, img_masks=None,
img_type_ids=None):
if img_type_ids is None:
img_type_ids = torch.ones_like(img_feat[:, :, 0].long())
img_type_embeddings = self.embeddings.token_type_embeddings(
img_type_ids)
output = self.img_embeddings(img_feat, img_pos_feat,
img_type_embeddings, img_masks)
return output
def _compute_img_txt_embeddings(self, input_ids, position_ids,
img_feat, img_pos_feat,
gather_index, img_masks=None,
txt_type_ids=None, img_type_ids=None):
txt_emb = self._compute_txt_embeddings( # [sample_num, token_num, 768]
input_ids, position_ids, txt_type_ids)
img_emb = self._compute_img_embeddings( # [sample_num, bb_max_num, 768]
img_feat, img_pos_feat, img_masks, img_type_ids)
if gather_index is not None: # evaluation
# align back to most compact input
gather_index = gather_index.unsqueeze(-1).expand( # [sample_num, ?, 768]
-1, -1, self.config.hidden_size)
embedding_output = torch.gather(torch.cat([txt_emb, img_emb], dim=1), # [sample_num, ?, 768]
dim=1, index=gather_index)
else:
embedding_output = torch.cat([txt_emb, img_emb], dim=1)
return embedding_output
def extend_self_attn_mask(self, attention_mask):
'''note this attention is 0-1'''
attention_mask = attention_mask.unsqueeze(1).unsqueeze(2)
attention_mask = attention_mask.to(dtype=next(self.parameters()).dtype)
attention_mask = torch.matmul(attention_mask.permute(0, 1, 3, 2), attention_mask)
return attention_mask
def extend_cross_attn_mask(self, txt_attn_mask, img_attn_mask):
txt_attn_mask = txt_attn_mask.unsqueeze(1).unsqueeze(2)
txt_attn_mask = txt_attn_mask.to(dtype=next(self.parameters()).dtype)
img_attn_mask = img_attn_mask.unsqueeze(1).unsqueeze(2)
img_attn_mask = img_attn_mask.to(dtype=next(self.parameters()).dtype)
t2i_attn_mask = torch.matmul(txt_attn_mask.permute(0, 1, 3, 2), img_attn_mask)
i2t_attn_mask = torch.matmul(img_attn_mask.permute(0, 1, 3, 2), txt_attn_mask)
return t2i_attn_mask, i2t_attn_mask
def forward(self, input_ids, position_ids,
img_feat, img_pos_feat,
attention_mask, gather_index=None, img_masks=None,
txt_attn_mask=None, img_attn_mask=None,
output_all_encoded_layers=True,
IAIS=False,
txt_type_ids=None, img_type_ids=None, pairs_num=3):
'''
input_ids: [sample_num, max_tl], position_ids: [1, max_tl]
img_feat: [sample_num, max_nbb, 2048], img_pos_feat: [sample_num, max_nbb, 7]
attention_mask: [sample_num, max_attn_len(max_tl+max_nbb)]
'''
# compute self-attention mask
extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(
2) # [sample_num, 1, 1, max_attn_len(max_tl+max_nbb)]
extended_attention_mask = extended_attention_mask.to(
dtype=next(self.parameters()).dtype) # fp16 compatibility
extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0
# embedding layer
if input_ids is None:
# image only
embedding_output = self._compute_img_embeddings(
img_feat, img_pos_feat, img_masks, img_type_ids)
elif img_feat is None:
# text only
embedding_output = self._compute_txt_embeddings(
input_ids, position_ids, txt_type_ids)
else:
embedding_output = self._compute_img_txt_embeddings(
input_ids, position_ids,
img_feat, img_pos_feat,
gather_index, img_masks, txt_type_ids, img_type_ids)
if IAIS: # train & IAIS
assert txt_attn_mask is not None and img_attn_mask is not None
extended_txt_attn_mask = self.extend_self_attn_mask(
txt_attn_mask) # [sample_num, 1, max_attn_len, max_attn_len]
extended_img_attn_mask = self.extend_self_attn_mask(img_attn_mask)
extended_t2i_attn_mask, extended_i2t_attn_mask = self.extend_cross_attn_mask(txt_attn_mask, img_attn_mask)
encoded_layers, self_attn_loss_per_layer = self.encoder(
embedding_output, extended_attention_mask,
extended_txt_attn_mask, extended_img_attn_mask,
extended_t2i_attn_mask, extended_i2t_attn_mask,
input_ids.size(1), img_feat.size(1),
output_all_encoded_layers=output_all_encoded_layers,
IAIS=IAIS,
pairs_num=pairs_num)
if not output_all_encoded_layers:
encoded_layers = encoded_layers[-1]
return encoded_layers, self_attn_loss_per_layer
else: # evaluation
encoded_layers = self.encoder(
embedding_output, extended_attention_mask,
output_all_encoded_layers=output_all_encoded_layers)
if not output_all_encoded_layers:
encoded_layers = encoded_layers[-1]
return encoded_layers