Skip to content

Latest commit

 

History

History
730 lines (535 loc) · 17.6 KB

README.md

File metadata and controls

730 lines (535 loc) · 17.6 KB

Lambë

A statically typed functional programming language inspired by Haskell, OCaml, Rust and Kotlin.

0. Paradigms

Targeted programming language paradigms for the design of Lambë are:

  • Functional programming,
  • Static typing,
  • Higher-kinded-type,
  • Smart cast
  • Algebraic Data Type aka ADT.
  • Trait based code organisation,
  • Trait specification as first class type citizen,
  • Trait implementation as first class term citizen,
  • Self receiver concept,
  • Coarse and fine grain self specification i.e. receiver type,
  • Structured comments
  • Syntax extension

1. Function

Keyword: Functional programming, Static typing

1.1 Basic concept

Definition

sig id       : forall a. a -> a
sig swap     : forall a b c.(a -> b -> c) -> b -> a -> c
sig compose  : forall a b c.(b -> c) -> (a -> b) -> a -> c
sig pipeline : forall a b c.(a -> b) -> (b -> c) -> a -> c

Implementation

def id       = { a -> a }         // equivalent to { _1 }
def swap     = { f x y -> f y x } // equivalent to { _1 _3 _2 }
def compose  = { _1 $ _2 _3 }     // equivalent to { f g x -> f (g x) }
def pipeline = swap compose

1.2 Self concept

Keyword: Self receiver concept

A function can be specified with a self type at the first position. Therefor such function is infix and accept the dot notation. The self type is define by the attached for directive.

Definition

sig ($)  : forall a b c. self -> (a -> b) -> a -> c for b -> c
sig (|>) : forall a b c. self -> (b -> c) -> a -> c for a -> b

Implementation

def ($) f a = self (f a)
def (|>) f = f $ self

Function with self definition in Action

1 + $ 3 + 4
3 + |> 4 + |> 2 * 5  

2. Data type

Keyword: Algebraic Data Type

2.1 Data type definition

2.1.1 Split definitions

type None     = data None
type Some a   = data Some (value: a)
type Option a = None | Some a

For each data a corresponding constructor is define denoted by a function where parameters are define thanks to attribute specification based order:

sig None : None
sig Some : forall a.a -> Some a

Lambë does not provide a pattern matching, but a Kotlin like smart cast on types.

// Given an optional o
when o
is None -> // o is a data None
is Some -> // o is a data Some

In this case, Some and None are types. Therefore, specific function can be designed with specific type like:

sig value : forall a.self -> a for Some a
def value = self.value  

Then, the expression Some 1 value is valid since the Some 1 is a Some Int.

2.1.2 Sealed definitions

type Option a = 
  data None 
| data Some (value: a)

For each data a corresponding constructor is define denoted by a function where parameters are define thanks to attribute specification based order:

sig None : forall a.Option a
sig Some : forall a.a -> Option a

The smart cast does not change since data Some (value : a)

2.1.2 Sealed expanded definitions

In fact, the previous sealed definition is a simplified version since the expanded version is given by the following specification:

type Option a = 
  data None       : Option a
| data Some value : a -> Option a

2.2 Data type implementation

impl forall a. Option a {
    sig fold: self -> b -> (a -> b) -> b

    def fold n s = 
        when self
        is None -> n
        is Some -> s self.value       
}

In this implementation for Option a we use a type named self. In fact self denotes the type of the receiver which is Option a in this case defined thanks to the for ... declaration. Furthermore, implementations are defined for each option data type i.e. None and Some.

2.3 Data type in action

Some 1 fold { 0 } id

3. Traits

Keyword: Trait based code organisation

Trait definition

trait Functor (f:*->*) {
    sig map   : self -> (a -> b) -> f b for f a
    sig (<$>) : self -> f a -> f b for a -> b
    
    def (<$>) a = a map f
}

The Functor has a parametric type constructor f revealing the support of higher-kinded-types in the language.

The map has a receiver called self and this receiver has the type f a given by the for directive.

trait Applicative (f:*->*) with Functor f {
    sig pure   : a -> f a
    sig (<*>)  : self -> f a -> f b for f (a -> b)
    sig (<**>) : self -> f (a -> b) -> f b for f a

    def (<**>) a = a <*> self
}

Such for directive can be defined at the trait level, signature level or definition level. If such a directive is not expressed for a method and does not have self as first parameter it's a static method.

trait Monad (f:*->*) with Applicative f {
    sig return : a -> f a 
    sig join   : self -> f a for f (f a)
    sig (>>=)  : self -> (a -> f b) -> f b for f a
    sig (=<<)  : self -> f a -> f b for a -> f b

    def return  = pure
    def (>>=) f = self map f join
    def (=<<) a = a >>= self
}

Finally, each method can be specified with a dedicated self type. As a conclusion, a trait define a logical development unit.

Trait implementation

Fold based version

impl Functor Option {
    def map f = self fold { None } { Some $ f $ _1 value }
}

impl Applicative Option {
    def pure = Some
    def (<*>) a = self fold { None } { _1 value map a }
}

impl Monad Option {
    def join = self fold { None } { _1 value }   
}

// (Monad Option).return 1 map (1 +)   

Smart lookup based version

impl Functor Option {
    def map f = 
      when self is
       is None -> None
       is Some -> Some $ f self.v
}

impl Applicative Option {
    def pure = Some
    def (<*>) a = self fold {None} { _ value map a }
}

impl Monad Option {
    def join = self fold {None} { _ value }    
}

Trait implementation in action

+ <$> (pure 1) <*> (pure 1) 

4. Modular system based on file

Keyword: Trait based code organisation

File as trait

Each file containing Lambë code is a trait definition. For instance a file named list can be defined by:

type Nil    = data Nil
type Cons a = data Cons (h: a) (t: List a)
type List a = Nil | Cons a

sig (::) : forall a. self -> List a -> List a for a
def (::) = Cons

// 1 :: Nil

This file content is in fact similar to the trait:

trait list {
    type Nil    = data Nil
    type Cons a = data Cons (h: a) (t: List a)
    type List a = Nil | Cons a

    sig (::) : forall a. self -> List a -> List a for a
    def (::) = Cons
}

This implies the capability to use list as a type elsewhere in the code but also the capability to define locally traits, types etc. in a trait, or it's implementation.

Generalising trait approach

If a file is a trait we can also reuse the for directive for each function.

trait list {
    type Nil    = data Nil
    type Cons a = data Cons (h: a) (t: List a)
    type List a = Nil | Cons a

    sig (::) : forall a. self -> List a -> List a for a
    def (::) = Cons self
}

Using trait

How this trait can be used in another file? Simple! Just provide an implementation or require its definitions.

Global trait implementation usage

use list

sig isEmpty : forall a. self -> bool for List a
def isEmpty = 
    when self
    is Nil  -> true
    is Cons -> false

Local trait implementation usage

Implementation car also be local using a specific let binding.

For instance, we can design a trait which denotes a transformation and an implementation from Try to Option.

trait (~>) (f:*->*) (g:*->*) {
    sig transform: forall a. self -> g a for f a
}

impl Try ~> Option {
    def transform =
        when self
        is Failure -> None
        is Success -> Some self.value
}

In another compilation an implementation can be locally and explicitly required. This is done using the specific binding.

sig main : forall a. Try a -> Option a
def main t =
    let use Try ~> Option in
        t transform

Of course this example requirement can only be specified. Therefore its implementation should be provided by the caller.

sig main : forall a.Try a -> Option a with Try ~> Option
def main t = t transform

Abstract trait

If a file is a trait, it can also define signatures without implementation. Therefore, the definition should be given when the implementation is required.

For instance the :: is specified but not defined:

type Nil    = data Nil
type Cons a = data Cons (h: a) (t: List a)
type List a = Nil | Cons a

sig (::) : forall a. self -> List a -> List a for a

This trait then can be used but the function :: implementation is mandatory.

impl list {
    def (::) = Cons self
}

5. Required implementation

Definition and requirements

trait Error a {
    raise : forall b. a -> b
}

sig div : int -> int -> int with Error string

def div x y =
    if (y == 0)
    then { raise "divide by zero!" }
    else { x / y }

Global scope

The implementation of Error string can be provided at the upper level. Then each expression requiring such Error string refers to the same implementation.

impl Error string {
    def raise = 0
}

div 3 0 // refers to the previous implementation

Local scope

The following code is embed in a basic block limiting the scope of the provided implementation.

def Error string = {
        def raise = 0
    } in
    div 3 0 // refers to the previous implementation (local scope)

Requiring trait

In trait definition some traits can be required thanks to the with keyword. It's important to notice the difference between with which is a requirement to be solved later, and an import.

with list

sig (++) : forall a. self -> self -> self for List a

def (++) l = 
    when self
    is Nil  -> l
    is Cons -> self.h :: $ self.t ++ l

In this sample the :: function is use but not implemented.

6. Examples

if/then/else DSL

type If     = data If (cond : bool)
type Then a = data Then(cond : bool) (then : unit -> a)

sig if : bool -> If
def if = If

impl If {
    sig then : forall a. self -> (unit -> a) -> Then a

    def then t = Then self.cond t
}

impl forall a. Then a {
    sig else : forall b.self -> (unit -> a) -> a | b

    def else f = self cond fold { self then () } { f () }
}

// if                                 : bool -> If
// if (a > 0)                         : If
// if (a > 0) then                    : forall a.(unit -> a) -> Then a
// if (a > 0) then { a-1 }            : Then int
// if (a > 0) then { a-1 } else       : forall b.(unit -> int) -> int | b
// if (a > 0) then { a-1 } else { a } : int

switch/case/otherwise DSL

/*
 * Language syntactic extension
 *
 *     switch e
 *     case c1   => e1
 *     case c2   => e2
 *     otherwise => e3
 */

type Predicate a = a -> bool

sig is : forall a. a -> Predicate a with Eq a
def is a b = a == b

sig switch : a -> Switch a b
def switch a = Switch a None

type Switch a b  = data Switch (value: a) (result : Option b)
type Case a b    = data Case (value : a) (result : (unit -> b) -> Option b)
type Otherwise b = data Otherwise(result : (unit -> b) -> b)

impl forall a b. Switch a b {
    sig case      : self -> Predicate a -> Case a b
    sig otherwise : self -> Otherwise a b

    def case p = Case self.value $ self.result
                                   fold { p self.value fold { Some $ $1 () } { None } }
                                        { self.result }
    def otherwise = Otherwise self.result
}

impl forall a b. Case a b {
    sig (=>) : self -> (unit -> b) -> Switch a b

    def (=>) f = Switch self.value $ self.result f
}

impl forall b. Otherwise b {
    sig (=>) : self -> (unit -> b) -> b

    def (=>) f = self.result () fold { f () } id
}

// switch 1                                                : Switch int b
// switch 1 case                                           : Predicate int -> Case int b
// switch 1 case (is 0)                                    : Case int b
// switch 1 case (is 0) =>                                 : (unit -> b) -> Switch int b
// switch 1 case (is 0) => { true }                        : Switch int bool
// switch 1 case (is 0) => { true } otherwise              : Otherwise bool
// switch 1 case (is 0) => { true } otherwise =>           : (unit -> bool) -> bool
// switch 1 case (is 0) => { true } otherwise => { false } : bool

Collection builder

Collection builder Data

type CollectionBuilder a b = data CollectionBuilder {
    add   : a -> CollectionBuilder a b
    unbox : b
}

type OpenableCollection a b = data OpenableCollection { 
    value : CollectionBuilder a b 
}

type ClosableCollection a b = data ClosableCollection {
    value : CollectionBuilder a b
} 

Collection builder trait implementations

impl forall a b. OpenableCollection a b {
    sig ([)   : self -> a -> ClosableCollection a b
    def ([) a = ClosableCollection $ self value add a

    sig empty : self -> b
    def empty = self value unbox
}

impl forall a b. ClosableCollection a b {
    sig (,) : self -> a -> self
    def (,) a = ClosableCollection $ self value add a

    sig (]) : self -> b
    def (])   = self value unbox
}

The list builder

type Nil    = data Nil
type Cons a = data Cons (h: a) (t: List a)
type List a = Nil | Cons a

sig List : forall a. OpenableCollection (List a) a
def List =
    let builder = { l -> CollectionBuilder l { builder $ Cons _ l } } in
    	OpenableCollection $ builder Nil

The List builder in action

List      : forall a. OpenableCollection (List a) a
List[     : forall a. a -> ClosableCollection (List a) a
List[1    : ClosableCollection (List int) int
List[1,   : int -> ClosableCollection (List int) int
List[1,2  : ClosableCollection (List int) int
List[1,2] : List int

7. Syntax extension

The syntax of expressions in Lambë can be extended and such extensions are applied during the parsing stage.

if/then/else expression

Thanks to this syntax extension capability we can easily propose for example an if/then/else instead of the previous functional version.

syntax if <p> then <a> else <b> { p fold { a } { b } () }
if condition a b then expr1 else expr2

Monadic let binding

Like in OCaml a specific let binding can be proposed:

syntax let* <a=ident> = <b> in <c> { b >>= { a -> c } } 
let* a = f b in g a

Do notation

The do notation is a based on a recursive construction. For this purpose the syntax extension can be express thanks to the following syntax extension:

syntax do <n=ident> <- <a> ; <b=do>   { a >>= { n -> b } }
        | <n=ident> <- <a> yield <b>  { a <$> { n -> b } } 
        | <a> ; <b=do>                { a >>= { b }      }
        | <a> yield <b>               { a <$> { b }      }
let use Monad Option in
    do n <- pure 30 
     ; r <- (+) <$> n <*> pure 10 
    yield r + 2

10. Grammar

s0        ::= entity*

entity    ::= kind | sig | def | type | trait | impl | use

use       ::= "use" IDENT
            | "from" IDENT use IDENT ("," IDENT)*
sig       ::= "sig" dname ":" type_expr for? with* 
def       ::= "def" dname param* "=" expr
data      ::= "data" dname t_param*
kind      ::= "kind" dname "=" kind_expr
type      ::= "type" dname t_param "=" type_expr ("|" type_expr) 
trait     ::= "trait" IDENT t_param* for? with* ("{" entity* "}")?
impl      ::= "impl" IDENT t_param* for? with* ("{" entity* "}")?
with      ::= "use" type_expr
for       ::= "for" type_expr

kind_expr ::= "*"
            | kind_expr "->" kind_expr
            | "(" kind_expr ")" 

attr_type ::= IDENT ":" type_expr

expr      ::= "{" (param+ "->")? expr "}"
            | "let" IDENT (param)* "=" expr "in" expr
            | "let" "impl" type_expr "in" expr
            | ("when" ("let" IDENT =)? expr)+ cases+``
            | param
            | native
            | "_"
            | expr expr
            | "(" expr ")"
            | dname
            | OPERATOR
            | expr "." dname
            | expr "with" ("IDENT "=" expr)+
            | impl
            
case      ::= ("is" type_expr)+ "->" expr            

type_expr ::= type_expr OPERATOR type_expr
            | "(" type_expr | OPERATOR ")"
            | type_expr type_expr
            | type_expr "." dname
            | type_expr "|" type_expr
            | data dname t_param*
            | IDENT 
            | "self"
            | "forall" (attr_kind)+ "." type_expr 
            | "exists" (attr_kind)+ "." type_expr 
            | "self" "->" type_expr "for" type_expr 

attr_kind ::= IDENT
            | "(" IDEND : kind_expr ")"

t_param   ::= "(" IDENT ":" type ")"
param     ::= IDENT
dname     ::= IDENT | "(" OPERATOR ")"
native    ::= STRING | DOUBLE | INT | FLOAT | CHAR

IDENT     ::= [a-zA-Z$_][a-zA-Z0-9$_]* - KEYWORDS
KEYWORDS  ::= "sig"   | "def"   | "data"
            | "type"  | "trait" | "impl"
            | "with"  | "for"   | "let" 
            | "in"    | "self"  | "when"
            | "is"

OPERATOR  ::= ([~$#?,;:@&!%><=+*/|_.^-]|\[|\])* - SYMBOLS
SYMBOLS   ::= "(" | ")" | "{" | "}" | "->" | ":" | "." | "|"

Why Lambë?

See Lambë definition. May be also because it has the same prefix as lambda 😏

License

Copyright 2019-2023 D. Plaindoux.

Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.