forked from Zhen-Dong/HAWQ
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathquant_train.py
executable file
·766 lines (656 loc) · 30.8 KB
/
quant_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
import argparse
import os
import random
import shutil
import time
import logging
import warnings
import torch
import torch.nn as nn
import torch.nn.parallel
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import torch.optim
import torch.multiprocessing as mp
import torch.utils.data
import torch.utils.data.distributed
import torchvision.transforms as transforms
import torchvision.datasets as datasets
import torchvision.models as models
from bit_config import *
from utils import *
from pytorchcv.model_provider import get_model as ptcv_get_model
parser = argparse.ArgumentParser(description='PyTorch ImageNet Training')
parser.add_argument('--data', metavar='DIR',
help='path to dataset')
parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18',
help='model architecture')
parser.add_argument('--teacher-arch',
type=str,
default='resnet101',
help='teacher network used to do distillation')
parser.add_argument('-j', '--workers', default=4, type=int, metavar='N',
help='number of data loading workers (default: 4)')
parser.add_argument('--epochs', default=90, type=int, metavar='N',
help='number of total epochs to run')
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('-b', '--batch-size', default=1, type=int,
metavar='N',
help='mini-batch size (default: 256), this is the total '
'batch size of all GPUs on the current node when '
'using Data Parallel or Distributed Data Parallel')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
metavar='LR', help='initial learning rate', dest='lr')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--wd', '--weight-decay', default=1e-4, type=float,
metavar='W', help='weight decay (default: 1e-4)',
dest='weight_decay')
parser.add_argument('-p', '--print-freq', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('--pretrained', dest='pretrained', action='store_true',
help='use pre-trained model')
parser.add_argument('--world-size', default=-1, type=int,
help='number of nodes for distributed training')
parser.add_argument('--rank', default=-1, type=int,
help='node rank for distributed training')
parser.add_argument('--dist-url', default='tcp://224.66.41.62:23456', type=str,
help='url used to set up distributed training')
parser.add_argument('--dist-backend', default='nccl', type=str,
help='distributed backend')
parser.add_argument('--seed', default=None, type=int,
help='seed for initializing training. ')
parser.add_argument('--gpu', default=None, type=int,
help='GPU id to use.')
parser.add_argument('--multiprocessing-distributed', action='store_true',
help='Use multi-processing distributed training to launch '
'N processes per node, which has N GPUs. This is the '
'fastest way to use PyTorch for either single node or '
'multi node data parallel training')
parser.add_argument('--act-range-momentum',
type=float,
default=-1,
help='momentum of the activation range moving average, '
'-1 stands for using minimum of min and maximum of max')
parser.add_argument('--quant-mode',
type=str,
default='symmetric',
choices=['asymmetric', 'symmetric'],
help='quantization mode')
parser.add_argument('--save-path',
type=str,
default='checkpoints/imagenet/test/',
help='path to save the quantized model')
parser.add_argument('--data-percentage',
type=float,
default=1,
help='data percentage of training data')
parser.add_argument('--fix-BN',
action='store_true',
help='whether to fix BN statistics and fold BN during training')
parser.add_argument('--fix-BN-threshold',
type=int,
default=None,
help='when to start training with fixed and folded BN,'
'after the threshold iteration, the original fix-BN will be overwritten to be True')
parser.add_argument('--checkpoint-iter',
type=int,
default=-1,
help='the iteration that we save all the featuremap for analysis')
parser.add_argument('--evaluate-times',
type=int,
default=-1,
help='The number of evaluations during one epoch')
parser.add_argument('--quant-scheme',
type=str,
default='uniform4',
help='quantization bit configuration')
parser.add_argument('--resume-quantize',
action='store_true',
help='if True map the checkpoint to a quantized model,'
'otherwise map the checkpoint to an ordinary model and then quantize')
parser.add_argument('--act-percentile',
type=float,
default=0,
help='the percentage used for activation percentile'
'(0 means no percentile, 99.9 means cut off 0.1%)')
parser.add_argument('--weight-percentile',
type=float,
default=0,
help='the percentage used for weight percentile'
'(0 means no percentile, 99.9 means cut off 0.1%)')
parser.add_argument('--channel-wise',
action='store_false',
help='whether to use channel-wise quantizaiton or not')
parser.add_argument('--bias-bit',
type=int,
default=32,
help='quantizaiton bit-width for bias')
parser.add_argument('--distill-method',
type=str,
default='None',
help='you can choose None or KD_naive')
parser.add_argument('--distill-alpha',
type=float,
default=0.95,
help='how large is the ratio of normal loss and teacher loss')
parser.add_argument('--temperature',
type=float,
default=6,
help='how large is the temperature factor for distillation')
parser.add_argument('--fixed-point-quantization',
action='store_true',
help='whether to skip deployment-oriented operations and '
'use fixed-point rather than integer-only quantization')
best_acc1 = 0
quantize_arch_dict = {'resnet50': q_resnet50, 'resnet50b': q_resnet50,
'resnet18': q_resnet18, 'resnet101': q_resnet101,
'inceptionv3': q_inceptionv3,
'mobilenetv2_w1': q_mobilenetv2_w1}
args = parser.parse_args()
if not os.path.exists(args.save_path):
os.makedirs(args.save_path)
hook_counter = args.checkpoint_iter
hook_keys = []
hook_keys_counter = 0
logging.basicConfig(format='%(asctime)s - %(message)s',
datefmt='%d-%b-%y %H:%M:%S', filename=args.save_path + 'log.log')
logging.getLogger().setLevel(logging.INFO)
logging.getLogger().addHandler(logging.StreamHandler())
logging.info(args)
def main():
if args.seed is not None:
random.seed(args.seed)
torch.manual_seed(args.seed)
cudnn.deterministic = True
warnings.warn('You have chosen to seed training. '
'This will turn on the CUDNN deterministic setting, '
'which can slow down your training considerably! '
'You may see unexpected behavior when restarting '
'from checkpoints.')
if args.gpu is not None:
warnings.warn('You have chosen a specific GPU. This will completely '
'disable data parallelism.')
if args.dist_url == "env://" and args.world_size == -1:
args.world_size = int(os.environ["WORLD_SIZE"])
args.distributed = args.world_size > 1 or args.multiprocessing_distributed
ngpus_per_node = torch.cuda.device_count()
if args.multiprocessing_distributed:
# Since we have ngpus_per_node processes per node, the total world_size
# needs to be adjusted accordingly
args.world_size = ngpus_per_node * args.world_size
# Use torch.multiprocessing.spawn to launch distributed processes: the
# main_worker process function
mp.spawn(main_worker, nprocs=ngpus_per_node, args=(ngpus_per_node, args))
else:
# Simply call main_worker function
main_worker(args.gpu, ngpus_per_node, args)
def main_worker(gpu, ngpus_per_node, args):
global best_acc1
args.gpu = gpu
if args.gpu is not None:
logging.info("Use GPU: {} for training".format(args.gpu))
if args.distributed:
if args.dist_url == "env://" and args.rank == -1:
args.rank = int(os.environ["RANK"])
if args.multiprocessing_distributed:
# For multiprocessing distributed training, rank needs to be the
# global rank among all the processes
args.rank = args.rank * ngpus_per_node + gpu
dist.init_process_group(backend=args.dist_backend, init_method=args.dist_url,
world_size=args.world_size, rank=args.rank)
# create model
if args.pretrained and not args.resume:
logging.info("=> using pre-trained PyTorchCV model '{}'".format(args.arch))
model = ptcv_get_model(args.arch, pretrained=True)
if args.distill_method != 'None':
logging.info("=> using pre-trained PyTorchCV teacher '{}'".format(args.teacher_arch))
teacher = ptcv_get_model(args.teacher_arch, pretrained=True)
else:
logging.info("=> creating PyTorchCV model '{}'".format(args.arch))
model = ptcv_get_model(args.arch, pretrained=False)
if args.distill_method != 'None':
logging.info("=> creating PyTorchCV teacher '{}'".format(args.teacher_arch))
teacher = ptcv_get_model(args.teacher_arch, pretrained=False)
if args.resume and not args.resume_quantize:
if os.path.isfile(args.resume):
logging.info("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)['state_dict']
model_key_list = list(model.state_dict().keys())
for key in model_key_list:
if 'num_batches_tracked' in key: model_key_list.remove(key)
i = 0
modified_dict = {}
for key, value in checkpoint.items():
if 'scaling_factor' in key: continue
if 'num_batches_tracked' in key: continue
if 'weight_integer' in key: continue
if 'min' in key or 'max' in key: continue
modified_key = model_key_list[i]
modified_dict[modified_key] = value
i += 1
logging.info(model.load_state_dict(modified_dict, strict=False))
else:
logging.info("=> no checkpoint found at '{}'".format(args.resume))
quantize_arch = quantize_arch_dict[args.arch]
model = quantize_arch(model)
bit_config = bit_config_dict["bit_config_" + args.arch + "_" + args.quant_scheme]
name_counter = 0
for name, m in model.named_modules():
if name in bit_config.keys():
name_counter += 1
setattr(m, 'quant_mode', 'symmetric')
setattr(m, 'bias_bit', args.bias_bit)
setattr(m, 'quantize_bias', (args.bias_bit != 0))
setattr(m, 'per_channel', args.channel_wise)
setattr(m, 'act_percentile', args.act_percentile)
setattr(m, 'act_range_momentum', args.act_range_momentum)
setattr(m, 'weight_percentile', args.weight_percentile)
setattr(m, 'fix_flag', False)
setattr(m, 'fix_BN', args.fix_BN)
setattr(m, 'fix_BN_threshold', args.fix_BN_threshold)
setattr(m, 'training_BN_mode', args.fix_BN)
setattr(m, 'checkpoint_iter_threshold', args.checkpoint_iter)
setattr(m, 'save_path', args.save_path)
setattr(m, 'fixed_point_quantization', args.fixed_point_quantization)
if type(bit_config[name]) is tuple:
bitwidth = bit_config[name][0]
if bit_config[name][1] == 'hook':
m.register_forward_hook(hook_fn_forward)
global hook_keys
hook_keys.append(name)
else:
bitwidth = bit_config[name]
if hasattr(m, 'activation_bit'):
setattr(m, 'activation_bit', bitwidth)
if bitwidth == 4:
setattr(m, 'quant_mode', 'asymmetric')
else:
setattr(m, 'weight_bit', bitwidth)
logging.info("match all modules defined in bit_config: {}".format(len(bit_config.keys()) == name_counter))
logging.info(model)
if args.resume and args.resume_quantize:
if os.path.isfile(args.resume):
logging.info("=> loading quantized checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)['state_dict']
modified_dict = {}
for key, value in checkpoint.items():
if 'num_batches_tracked' in key: continue
if 'weight_integer' in key: continue
if 'bias_integer' in key: continue
modified_key = key.replace("module.", "")
modified_dict[modified_key] = value
model.load_state_dict(modified_dict, strict=False)
else:
logging.info("=> no quantized checkpoint found at '{}'".format(args.resume))
if args.distributed:
# For multiprocessing distributed, DistributedDataParallel constructor
# should always set the single device scope, otherwise,
# DistributedDataParallel will use all available devices.
if args.gpu is not None:
torch.cuda.set_device(args.gpu)
model.cuda(args.gpu)
# When using a single GPU per process and per
# DistributedDataParallel, we need to divide the batch size
# ourselves based on the total number of GPUs we have
args.batch_size = int(args.batch_size / ngpus_per_node)
args.workers = int((args.workers + ngpus_per_node - 1) / ngpus_per_node)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.gpu])
if args.distill_method != 'None':
teacher.cuda(args.gpu)
teacher = torch.nn.parallel.DistributedDataParallel(teacher, device_ids=[args.gpu])
else:
model.cuda()
# DistributedDataParallel will divide and allocate batch_size to all
# available GPUs if device_ids are not set
model = torch.nn.parallel.DistributedDataParallel(model)
if args.distill_method != 'None':
teacher.cuda()
teacher = torch.nn.parallel.DistributedDataParallel(teacher)
elif args.gpu is not None:
torch.cuda.set_device(args.gpu)
model = model.cuda(args.gpu)
if args.distill_method != 'None':
teacher = teacher.cuda(args.gpu)
else:
# DataParallel will divide and allocate batch_size to all available GPUs
if args.arch.startswith('alexnet') or args.arch.startswith('vgg'):
model.features = torch.nn.DataParallel(model.features)
model.cuda()
# teacher is not alexnet or vgg
if args.distill_method != 'None':
teacher = torch.nn.DataParallel(teacher).cuda()
else:
model = torch.nn.DataParallel(model).cuda()
if args.distill_method != 'None':
teacher = torch.nn.DataParallel(teacher).cuda()
# define loss function (criterion) and optimizer
criterion = nn.CrossEntropyLoss().cuda(args.gpu)
optimizer = torch.optim.SGD(model.parameters(), args.lr,
momentum=args.momentum,
weight_decay=args.weight_decay)
# optionally resume optimizer and meta information from a checkpoint
if args.resume:
if os.path.isfile(args.resume):
if args.gpu is None:
checkpoint = torch.load(args.resume)
else:
# Map model to be loaded to specified single gpu.
loc = 'cuda:{}'.format(args.gpu)
checkpoint = torch.load(args.resume, map_location=loc)
args.start_epoch = checkpoint['epoch']
best_acc1 = checkpoint['best_acc1']
if args.gpu is not None:
# best_acc1 may be from a checkpoint from a different GPU
best_acc1 = best_acc1.to(args.gpu)
optimizer.load_state_dict(checkpoint['optimizer'])
logging.info("=> loaded optimizer and meta information from checkpoint '{}' (epoch {})".
format(args.resume, checkpoint['epoch']))
else:
logging.info("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
# Data loading code
traindir = os.path.join(args.data, 'train')
valdir = os.path.join(args.data, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_resolution = 224
if args.arch == "inceptionv3":
train_resolution = 299
train_dataset = datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomResizedCrop(train_resolution),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
]))
if args.distributed:
train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
else:
train_sampler = None
dataset_length = int(len(train_dataset) * args.data_percentage)
if args.data_percentage == 1:
train_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler)
else:
partial_train_dataset, _ = torch.utils.data.random_split(train_dataset,
[dataset_length, len(train_dataset) - dataset_length])
train_loader = torch.utils.data.DataLoader(
partial_train_dataset, batch_size=args.batch_size, shuffle=(train_sampler is None),
num_workers=args.workers, pin_memory=True, sampler=train_sampler)
test_resolution = (256, 224)
if args.arch == 'inceptionv3':
test_resolution = (342, 299)
# evaluate on validation set
val_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(valdir, transforms.Compose([
transforms.Resize(test_resolution[0]),
transforms.CenterCrop(test_resolution[1]),
transforms.ToTensor(),
normalize,
])),
batch_size=args.batch_size, shuffle=False,
num_workers=args.workers, pin_memory=True)
if args.evaluate:
validate(val_loader, model, criterion, args)
return
best_epoch = 0
for epoch in range(args.start_epoch, args.epochs):
if args.distributed:
train_sampler.set_epoch(epoch)
adjust_learning_rate(optimizer, epoch, args)
# train for one epoch
if args.distill_method != 'None':
train_kd(train_loader, model, teacher, criterion, optimizer, epoch, val_loader,
args, ngpus_per_node, dataset_length)
else:
train(train_loader, model, criterion, optimizer, epoch, args)
acc1 = validate(val_loader, model, criterion, args)
# remember best acc@1 and save checkpoint
is_best = acc1 > best_acc1
best_acc1 = max(acc1, best_acc1)
logging.info(f'Best acc at epoch {epoch}: {best_acc1}')
if is_best:
# record the best epoch
best_epoch = epoch
if not args.multiprocessing_distributed or (args.multiprocessing_distributed
and args.rank % ngpus_per_node == 0):
if not os.path.exists(args.save_path):
os.makedirs(args.save_path)
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_acc1': best_acc1,
'optimizer': optimizer.state_dict(),
}, is_best, args.save_path)
def train(train_loader, model, criterion, optimizer, epoch, args):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
len(train_loader),
[batch_time, data_time, losses, top1, top5],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
if args.fix_BN == True:
model.eval()
else:
model.train()
end = time.time()
for i, (images, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
if args.gpu is not None:
images = images.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# compute output
output = model(images)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
def train_kd(train_loader, model, teacher, criterion, optimizer, epoch, val_loader, args, ngpus_per_node,
dataset_length):
batch_time = AverageMeter('Time', ':6.3f')
data_time = AverageMeter('Data', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
len(train_loader),
[batch_time, data_time, losses, top1, top5],
prefix="Epoch: [{}]".format(epoch))
# switch to train mode
if args.fix_BN == True:
model.eval()
else:
model.train()
teacher.eval()
end = time.time()
for i, (images, target) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
if args.gpu is not None:
images = images.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# compute output
output = model(images)
if args.distill_method != 'None':
with torch.no_grad():
teacher_output = teacher(images)
if args.distill_method == 'None':
loss = criterion(output, target)
elif args.distill_method == 'KD_naive':
loss = loss_kd(output, target, teacher_output, args)
else:
raise NotImplementedError
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
if i % args.print_freq == 0 and args.rank == 0:
print('Epoch {epoch_} [{iters}] Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'.format(epoch_=epoch, iters=i,
top1=top1, top5=top5))
if i % ((dataset_length // (
args.batch_size * args.evaluate_times)) + 2) == 0 and i > 0 and args.evaluate_times > 0:
acc1 = validate(val_loader, model, criterion, args)
# switch to train mode
if args.fix_BN == True:
model.eval()
else:
model.train()
# remember best acc@1 and save checkpoint
global best_acc1
is_best = acc1 > best_acc1
best_acc1 = max(acc1, best_acc1)
if not args.multiprocessing_distributed or (args.multiprocessing_distributed
and args.rank % ngpus_per_node == 0):
if not os.path.exists(args.save_path):
os.makedirs(args.save_path)
save_checkpoint({
'epoch': epoch + 1,
'arch': args.arch,
'state_dict': model.state_dict(),
'best_acc1': best_acc1,
'optimizer': optimizer.state_dict(),
}, is_best, args.save_path)
def validate(val_loader, model, criterion, args):
batch_time = AverageMeter('Time', ':6.3f')
losses = AverageMeter('Loss', ':.4e')
top1 = AverageMeter('Acc@1', ':6.2f')
top5 = AverageMeter('Acc@5', ':6.2f')
progress = ProgressMeter(
len(val_loader),
[batch_time, losses, top1, top5],
prefix='Test: ')
# switch to evaluate mode
freeze_model(model)
model.eval()
with torch.no_grad():
end = time.time()
for i, (images, target) in enumerate(val_loader):
if args.gpu is not None:
images = images.cuda(args.gpu, non_blocking=True)
target = target.cuda(args.gpu, non_blocking=True)
# compute output
output = model(images)
loss = criterion(output, target)
# measure accuracy and record loss
acc1, acc5 = accuracy(output, target, topk=(1, 5))
losses.update(loss.item(), images.size(0))
top1.update(acc1[0], images.size(0))
top5.update(acc5[0], images.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
progress.display(i)
logging.info(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'.format(top1=top1, top5=top5))
torch.save({'convbn_scaling_factor': {k: v for k, v in model.state_dict().items() if 'convbn_scaling_factor' in k},
'fc_scaling_factor': {k: v for k, v in model.state_dict().items() if 'fc_scaling_factor' in k},
'weight_integer': {k: v for k, v in model.state_dict().items() if 'weight_integer' in k},
'bias_integer': {k: v for k, v in model.state_dict().items() if 'bias_integer' in k},
'act_scaling_factor': {k: v for k, v in model.state_dict().items() if 'act_scaling_factor' in k},
}, args.save_path + 'quantized_checkpoint.pth.tar')
unfreeze_model(model)
return top1.avg
def save_checkpoint(state, is_best, filename=None):
torch.save(state, filename + 'checkpoint.pth.tar')
if is_best:
shutil.copyfile(filename + 'checkpoint.pth.tar', filename + 'model_best.pth.tar')
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self, name, fmt=':f'):
self.name = name
self.fmt = fmt
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def __str__(self):
fmtstr = '{name} {val' + self.fmt + '} ({avg' + self.fmt + '})'
return fmtstr.format(**self.__dict__)
class ProgressMeter(object):
def __init__(self, num_batches, meters, prefix=""):
self.batch_fmtstr = self._get_batch_fmtstr(num_batches)
self.meters = meters
self.prefix = prefix
def display(self, batch):
entries = [self.prefix + self.batch_fmtstr.format(batch)]
entries += [str(meter) for meter in self.meters]
logging.info('\t'.join(entries))
def _get_batch_fmtstr(self, num_batches):
num_digits = len(str(num_batches // 1))
fmt = '{:' + str(num_digits) + 'd}'
return '[' + fmt + '/' + fmt.format(num_batches) + ']'
def adjust_learning_rate(optimizer, epoch, args):
"""Sets the learning rate to the initial LR decayed by 10 every 30 epochs"""
lr = args.lr * (0.1 ** (epoch // 30))
print('lr = ', lr)
for param_group in optimizer.param_groups:
param_group['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the accuracy over the k top predictions for the specified values of k"""
with torch.no_grad():
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].reshape(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def loss_kd(output, target, teacher_output, args):
"""
Compute the knowledge-distillation (KD) loss given outputs and labels.
"Hyperparameters": temperature and alpha
The KL Divergence for PyTorch comparing the softmaxs of teacher and student.
The KL Divergence expects the input tensor to be log probabilities.
"""
alpha = args.distill_alpha
T = args.temperature
KD_loss = F.kl_div(F.log_softmax(output / T, dim=1), F.softmax(teacher_output / T, dim=1)) * (alpha * T * T) + \
F.cross_entropy(output, target) * (1. - alpha)
return KD_loss
if __name__ == '__main__':
main()