-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathface_recognition.py
100 lines (77 loc) · 2.82 KB
/
face_recognition.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import cv2
import os
import numpy as np
################ KNN Code ##################################
def distance(v1, v2):
return np.sqrt(((v1 - v2) ** 2).sum())
def knn(train, test, k=5):
dist = []
for i in range(train.shape[0]):
# Get the vector and label
ix = train[i, :-1]
iy = train[i, -1]
# Compute the distance from test point
d = distance(test, ix)
dist.append([d, iy])
# Sort based on distance and get top k
dk = sorted(dist, key=lambda x: x[0])[:k]
# Retrieve only the labels
labels = np.array(dk)[:, -1]
# Get frequencies of each label
output = np.unique(labels, return_counts=True)
# Find max frequency and corresponding label
index = np.argmax(output[1])
return output[0][index]
############################################################
# Init camera
cap = cv2.VideoCapture(0)
# Face Detection
face_cascade = cv2.CascadeClassifier(r"C:\Users\Dell\PycharmProjects\PythonProjects\haarcascade_frontalface_alt.xml")
skip = 0
face_data = []
dataset_path = "C:/Users/Dell/Desktop/"
labels = []
class_id = 0 # Labels for the given file
names = {} # Mapping btw id - name
# Data Preparation
for fx in os.listdir(dataset_path):
if fx.endswith('.npy'):
# Create a mapping b/w class_id and name
names[class_id] = fx[:-4]
print("Loaded " + fx)
data_item = np.load(dataset_path + fx)
face_data.append(data_item)
# Create labels for the class
target = class_id * np.ones((data_item.shape[0]))
class_id += 1
labels.append(target)
face_dataset = np.concatenate(face_data, axis=0)
face_labels = np.concatenate(labels, axis=0).reshape((-1, 1))
print(face_dataset.shape)
print(face_labels.shape)
trainset = np.concatenate((face_dataset, face_labels), axis=1)
print(trainset.shape)
# Testing
while True:
ret, frame = cap.read()
if ret == False:
continue
faces = face_cascade.detectMultiScale(frame, 1.3, 5)
for face in faces:
x, y, w, h = face
# Get the face ROI (Region of Interest)
offset = 10
face_section = frame[y - offset:y + h + offset, x - offset:x + w + offset]
face_section = cv2.resize(face_section, (100, 100))
# Predicted label (out)
out = knn(trainset, face_section.flatten())
# Display on the screen the name and rectangle around it
pred_name = names[int(out)]
cv2.putText(frame, pred_name, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2, cv2.LINE_AA)
cv2.rectangle(frame, (x, y), (x + w, y + h), (255, 0, 0), 2)
cv2.imshow("MY Frame", frame)
key = cv2.waitKey(1) & 0xFF
if key == ord('q'):
break
cap.release()
cv2.destroyAllWindows()