diff --git a/src/search_type/image_search.py b/src/search_type/image_search.py index b57d4f20d..7946f9a2b 100644 --- a/src/search_type/image_search.py +++ b/src/search_type/image_search.py @@ -60,18 +60,21 @@ def compute_embeddings(image_names, encoder, embeddings_file, batch_size=50, use def compute_image_embeddings(image_names, encoder, embeddings_file, batch_size=50, regenerate=False, verbose=0): - image_embeddings = None - # Load pre-computed image embeddings from file if exists if resolve_absolute_path(embeddings_file).exists() and not regenerate: image_embeddings = torch.load(embeddings_file) if verbose > 0: print(f"Loaded pre-computed embeddings from {embeddings_file}") # Else compute the image embeddings from scratch, which can take a while - elif image_embeddings is None: + else: image_embeddings = [] for index in trange(0, len(image_names), batch_size): - images = [Image.open(image_name) for image_name in image_names[index:index+batch_size]] + images = [] + for image_name in image_names[index:index+batch_size]: + image = Image.open(image_name) + # Resize images to max width of 640px for faster processing + image.thumbnail((640, image.height)) + images += [image] image_embeddings += encoder.encode( images, convert_to_tensor=True, @@ -137,6 +140,7 @@ def query(raw_query, count, model: ImageSearchModel): if pathlib.Path(raw_query).is_file(): query_imagepath = resolve_absolute_path(pathlib.Path(raw_query), strict=True) query = copy.deepcopy(Image.open(query_imagepath)) + query.thumbnail((640, query.height)) # scale down image for faster processing if model.verbose > 0: print(f"Find Images similar to Image at {query_imagepath}") else: