-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathface_recognition_part1.py
56 lines (32 loc) · 1.11 KB
/
face_recognition_part1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
#program for collecting face samples
import cv2
import numpy as np
face_classifier = cv2.CascadeClassifier("C:/Python/Lib/site-packages/cv2/data/haarcascade_frontalface_default.xml")
def face_extractor(img):
gray=cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
faces = face_classifier.detectMultiScale(gray,1.3,5)
if faces is():
return None
for(x,y,w,h) in faces:
cropped_face = img[y:y+h, x:x+w]
return cropped_face
cap = cv2.VideoCapture(0)
count = 0
while True:
ret, frame = cap.read()
if face_extractor(frame) is not None:
count+=1
face = cv2.resize(face_extractor(frame),(200,200))
face = cv2.cvtColor(face, cv2.COLOR_BGR2GRAY)
file_name_path = 'C:/ML_project/faces/user'+str(count)+'.jpg'
cv2.imwrite(file_name_path,face)
cv2.putText(face,str(count),(50,50),cv2.FONT_HERSHEY_COMPLEX,1,(0,255,0),2)
cv2.imshow('Face Cropper', face)
else:
print('Face Not Found')
pass
if cv2.waitKey(1)==13 or count ==100:
break
cap.release()
cv2.destroyAllWindows()
print('Collecting samples complted!!')