-
Notifications
You must be signed in to change notification settings - Fork 125
/
Copy pathsim_policy.py
126 lines (110 loc) · 4.68 KB
/
sim_policy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os, shutil
import os.path as osp
import pickle
import json
import numpy as np
import click
import torch
from rlkit.envs import ENVS
from rlkit.envs.wrappers import NormalizedBoxEnv, CameraWrapper
from rlkit.torch.sac.policies import TanhGaussianPolicy
from rlkit.torch.networks import FlattenMlp, MlpEncoder, RecurrentEncoder
from rlkit.torch.sac.agent import PEARLAgent
from configs.default import default_config
from launch_experiment import deep_update_dict
from rlkit.torch.sac.policies import MakeDeterministic
from rlkit.samplers.util import rollout
def sim_policy(variant, path_to_exp, num_trajs=1, deterministic=False, save_video=False):
'''
simulate a trained policy adapting to a new task
optionally save videos of the trajectories - requires ffmpeg
:variant: experiment configuration dict
:path_to_exp: path to exp folder
:num_trajs: number of trajectories to simulate per task (default 1)
:deterministic: if the policy is deterministic (default stochastic)
:save_video: whether to generate and save a video (default False)
'''
# create multi-task environment and sample tasks
env = CameraWrapper(NormalizedBoxEnv(ENVS[variant['env_name']](**variant['env_params'])), variant['util_params']['gpu_id'])
tasks = env.get_all_task_idx()
obs_dim = int(np.prod(env.observation_space.shape))
action_dim = int(np.prod(env.action_space.shape))
eval_tasks=list(tasks[-variant['n_eval_tasks']:])
print('testing on {} test tasks, {} trajectories each'.format(len(eval_tasks), num_trajs))
# instantiate networks
latent_dim = variant['latent_size']
context_encoder = latent_dim * 2 if variant['algo_params']['use_information_bottleneck'] else latent_dim
reward_dim = 1
net_size = variant['net_size']
recurrent = variant['algo_params']['recurrent']
encoder_model = RecurrentEncoder if recurrent else MlpEncoder
context_encoder = encoder_model(
hidden_sizes=[200, 200, 200],
input_size=obs_dim + action_dim + reward_dim,
output_size=context_encoder,
)
policy = TanhGaussianPolicy(
hidden_sizes=[net_size, net_size, net_size],
obs_dim=obs_dim + latent_dim,
latent_dim=latent_dim,
action_dim=action_dim,
)
agent = PEARLAgent(
latent_dim,
context_encoder,
policy,
**variant['algo_params']
)
# deterministic eval
if deterministic:
agent = MakeDeterministic(agent)
# load trained weights (otherwise simulate random policy)
context_encoder.load_state_dict(torch.load(os.path.join(path_to_exp, 'context_encoder.pth')))
policy.load_state_dict(torch.load(os.path.join(path_to_exp, 'policy.pth')))
# loop through tasks collecting rollouts
all_rets = []
video_frames = []
for idx in eval_tasks:
env.reset_task(idx)
agent.clear_z()
paths = []
for n in range(num_trajs):
path = rollout(env, agent, max_path_length=variant['algo_params']['max_path_length'], accum_context=True, save_frames=save_video)
paths.append(path)
if save_video:
video_frames += [t['frame'] for t in path['env_infos']]
if n >= variant['algo_params']['num_exp_traj_eval']:
agent.infer_posterior(agent.context)
all_rets.append([sum(p['rewards']) for p in paths])
if save_video:
# save frames to file temporarily
temp_dir = os.path.join(path_to_exp, 'temp')
os.makedirs(temp_dir, exist_ok=True)
for i, frm in enumerate(video_frames):
frm.save(os.path.join(temp_dir, '%06d.jpg' % i))
video_filename=os.path.join(path_to_exp, 'video.mp4'.format(idx))
# run ffmpeg to make the video
os.system('ffmpeg -i {}/%06d.jpg -vcodec mpeg4 {}'.format(temp_dir, video_filename))
# delete the frames
shutil.rmtree(temp_dir)
# compute average returns across tasks
n = min([len(a) for a in all_rets])
rets = [a[:n] for a in all_rets]
rets = np.mean(np.stack(rets), axis=0)
for i, ret in enumerate(rets):
print('trajectory {}, avg return: {} \n'.format(i, ret))
@click.command()
@click.argument('config', default=None)
@click.argument('path', default=None)
@click.option('--num_trajs', default=3)
@click.option('--deterministic', is_flag=True, default=False)
@click.option('--video', is_flag=True, default=False)
def main(config, path, num_trajs, deterministic, video):
variant = default_config
if config:
with open(osp.join(config)) as f:
exp_params = json.load(f)
variant = deep_update_dict(exp_params, variant)
sim_policy(variant, path, num_trajs, deterministic, video)
if __name__ == "__main__":
main()