-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathAED_spec.py
155 lines (108 loc) · 4.27 KB
/
AED_spec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import os
import traceback
import operator
import numpy as np
import cv2
import python_speech_features as psf
import scipy.io.wavfile as wave
from scipy import interpolate
######################################################
src_dir = 'dataset/train/wav/'
spec_dir = 'dataset/train/spec/'
SPEC_LENGTH = 3 #seconds
SPEC_OVERLAP = 2 #seconds
######################################################
def getSpecSettings(seconds):
#recommended settings for spectrogram extraction
settings = {2:[0.015, 0.0068],
3:[0.02, 0.00585],
5:[0.05, 0.0097],
10:[0.05, 0.0195],
30:[0.05, 0.0585]}
winlen = settings[seconds][0]
winstep = settings[seconds][1]
nfft = 511
return winlen, winstep, nfft
def changeSampleRate(sig, rate):
duration = sig.shape[0] / rate
time_old = np.linspace(0, duration, sig.shape[0])
time_new = np.linspace(0, duration, int(sig.shape[0] * 44100 / rate))
interpolator = interpolate.interp1d(time_old, sig.T)
new_audio = interpolator(time_new).T
sig = np.round(new_audio).astype(sig.dtype)
return sig, 44100
def getSpecFromSignal(sig, rate, seconds=SPEC_LENGTH):
#get settings
winlen, winstep, nfft = getSpecSettings(seconds)
#get frames
winfunc=lambda x:np.ones((x,))
frames = psf.sigproc.framesig(sig, winlen*rate, winstep*rate, winfunc)
#Magnitude Spectrogram
magspec = np.rot90(psf.sigproc.magspec(frames, nfft))
#normalize to values from 0 to 1
magspec -= magspec.min(axis=None)
magspec /= magspec.max(axis=None)
#adjust shape if signal is too short
magspec = magspec[:256, :512]
temp = np.zeros((256, 512), dtype="float32")
temp[:magspec.shape[0], :magspec.shape[1]] = magspec
magspec = temp.copy()
magspec = cv2.resize(magspec, (512, 256))
#DEBUG: show
#cv2.imshow('SPEC', magspec)
#cv2.waitKey(-1)
return magspec
def splitSignal(sig, rate, seconds=SPEC_LENGTH, overlap=SPEC_OVERLAP):
#split signal with ovelap
sig_splits = []
for i in xrange(0, len(sig), int((seconds - overlap) * rate)):
split = sig[i:i + seconds * rate]
if len(split) >= 1 * rate:
sig_splits.append(split)
#is signal too short for segmentation?
if len(sig_splits) == 0:
sig_splits.append(sig)
return sig_splits
def getMultiSpec(path, seconds=SPEC_LENGTH, overlap=SPEC_OVERLAP):
#open wav file
(rate, sig) = wave.read(path)
print "SAMPLE RATE:", rate,
#adjust to different sample rates
if rate != 44100:
sig, rate = changeSampleRate(sig, rate)
#split signal into chunks
sig_splits = splitSignal(sig, rate, seconds, overlap)
#calculate spectrogram for every split
for sig in sig_splits:
magspec = getSpecFromSignal(sig, rate, seconds)
yield magspec
######################################################
if __name__ == "__main__":
events = [src_dir + event + '/' for event in sorted(os.listdir(src_dir))]
print "NUMBER OF EVENTS:", len(events)
#parse wave files for every event class
for event in events:
total_specs = 0
#get wav files for event class
wav_files = [event + wav for wav in sorted(os.listdir(event))]
#parse wav files
for wav in wav_files:
#stats
spec_cnt = 0
print wav,
try:
#extract specs from wav file
for spec in getMultiSpec(wav):
#output dir for specs
dst_dir = spec_dir + event.split("/")[-2] + "/"
if not os.path.exists(dst_dir):
os.makedirs(dst_dir)
#save spec
cv2.imwrite(dst_dir + wav.split("/")[-1].rsplit(".")[0] + "_" + str(spec_cnt) + ".png", spec * 255.0)
spec_cnt += 1
total_specs += 1
print "SPECS:", spec_cnt
except:
print spec_cnt, "ERROR"
traceback.print_exc()
pass