JSON Schema (application/schema+json) has several purposes, one of which is JSON instance validation. This document specifies a vocabulary for JSON Schema to describe the meaning of JSON documents, provide hints for user interfaces working with JSON data, and to make assertions about what a valid document must look like.
The issues list for this draft can be found at /~https://github.com/json-schema-org/json-schema-spec/issues.
For additional information, see https://json-schema.org/.
To provide feedback, use this issue tracker, the communication methods listed on the homepage, or email the document editors.
JSON Schema can be used to require that a given JSON document (an instance) satisfies a certain number of criteria. These criteria are asserted by using keywords described in this specification. In addition, a set of keywords is also defined to assist in interactive user interface instance generation.
This specification will use the concepts, syntax, and terminology defined by the JSON Schema core specification.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119.
This specification uses the term "container instance" to refer to both array and object instances. It uses the term "children instances" to refer to array elements or object member values.
Elements in an array value are said to be unique if no two elements of this array are equal.
JSON Schema validation asserts constraints on the structure of instance data. An instance location that satisfies all asserted constraints is then annotated with any keywords that contain non-assertion information, such as descriptive metadata and usage hints. If all locations within the instance satisfy all asserted constraints, then the instance is said to be valid against the schema.
Each schema object is independently evaluated against each instance location to which it applies. This greatly simplifies the implementation requirements for validators by ensuring that they do not need to maintain state across the document-wide validation process.
This specification defines a set of assertion keywords, as well as a number of metadata keywords that can be used to annotate the JSON instance with useful information. The {{format}} keyword is intended primarily as an annotation, but can optionally be used as an assertion. The {{content}} keywords are annotations for working with documents embedded as JSON strings.
It should be noted that the nul character (\u0000) is valid in a JSON string. An instance to validate may contain a string value with this character, regardless of the ability of the underlying programming language to deal with such data.
The JSON specification allows numbers with arbitrary precision, and JSON Schema does not add any such bounds. This means that numeric instances processed by JSON Schema can be arbitrarily large and/or have an arbitrarily long decimal part, regardless of the ability of the underlying programming language to deal with such data.
Keywords that use regular expressions, or constrain the instance value to be a regular expression, are subject to the interoperability considerations for regular expressions in the JSON Schema Core specification.
The current IRI for the default JSON Schema dialect meta-schema is
https://json-schema.org/draft/next/schema
. For schema author convenience, this
meta-schema describes a dialect consisting of all keywords defined in this
specification and the JSON Schema Core specification. Certain keywords specify
some functionality which is optional to support and is explained in detail in
the relevant sections.
Updated meta-schema IRIs MAY be published between specification drafts in order to correct errors. Implementations SHOULD consider IRIs dated after this specification draft and before the next to indicate the same syntax and semantics as those listed here.
Validation keywords in a schema impose requirements for successful validation of an instance. These keywords are all assertions without any annotation behavior.
The value of this keyword MUST be either a string or an array. If it is an array, it MUST be non-empty, and elements of the array MUST be strings and MUST be unique.
String values MUST be one of the six primitive types ("null", "boolean", "object", "array", "number", or "string"), or "integer" which matches any number with a zero fractional part.
If the value of type
is a string, then an instance validates successfully if
its type matches the type represented by the value of the string.
If the value of type
is an array, then an instance validates successfully if
its type matches any of the types indicated by the strings in the array.
The value of this keyword MUST be an array. This array SHOULD have at least one element. Elements in the array SHOULD be unique.
An instance validates successfully against this keyword if its value is equal to one of the elements in this keyword's array value.
Elements in the array might be of any type, including null.
The value of this keyword MAY be of any type, including null.
Use of this keyword is functionally equivalent to an enum
with a
single value.
An instance validates successfully against this keyword if its value is equal to the value of the keyword.
The value of multipleOf
MUST be a number, strictly greater than 0.
A numeric instance is valid only if division by this keyword's value results in an integer.
The value of maximum
MUST be a number, representing an inclusive upper limit
for a numeric instance.
If the instance is a number, then this keyword validates only if the instance is
less than or exactly equal to maximum
.
The value of exclusiveMaximum
MUST be a number, representing an exclusive
upper limit for a numeric instance.
If the instance is a number, then the instance is valid only if it has a value
strictly less than (not equal to) exclusiveMaximum
.
The value of minimum
MUST be a number, representing an inclusive lower limit
for a numeric instance.
If the instance is a number, then this keyword validates only if the instance is
greater than or exactly equal to minimum
.
The value of exclusiveMinimum
MUST be a number, representing an exclusive
lower limit for a numeric instance.
If the instance is a number, then the instance is valid only if it has a value
strictly greater than (not equal to) exclusiveMinimum
.
The value of this keyword MUST be a non-negative integer.
A string instance is valid against this keyword if its length is less than, or equal to, the value of this keyword.
The length of a string instance is defined as the number of its characters as defined by RFC 8259.
The value of this keyword MUST be a non-negative integer.
A string instance is valid against this keyword if its length is greater than, or equal to, the value of this keyword.
The length of a string instance is defined as the number of its characters as defined by RFC 8259.
Omitting this keyword has the same behavior as a value of 0.
The value of this keyword MUST be a string. This string SHOULD be a valid regular expression, according to the ECMA-262 regular expression dialect.
A string instance is considered valid if the regular expression matches the instance successfully. Recall: regular expressions are not implicitly anchored.
The value of this keyword MUST be a non-negative integer.
An array instance is valid against maxItems
if its size is less than, or equal
to, the value of this keyword.
The value of this keyword MUST be a non-negative integer.
An array instance is valid against minItems
if its size is greater than, or
equal to, the value of this keyword.
Omitting this keyword has the same behavior as a value of 0.
The value of this keyword MUST be a boolean.
If this keyword has boolean value false
, the instance validates successfully.
If it has boolean value true
, the instance validates successfully if all of
its elements are unique.
Omitting this keyword has the same behavior as a value of false
.
The value of this keyword MUST be a non-negative integer.
An object instance is valid against maxProperties
if its number of properties
is less than, or equal to, the value of this keyword.
The value of this keyword MUST be a non-negative integer.
An object instance is valid against minProperties
if its number of properties
is greater than, or equal to, the value of this keyword.
Omitting this keyword has the same behavior as a value of 0.
The value of this keyword MUST be an array. Elements of this array, if any, MUST be strings, and MUST be unique.
An object instance is valid against this keyword if every item in the array is the name of a property in the instance.
Omitting this keyword has the same behavior as an empty array.
The value of this keyword MUST be an object. Properties in this object, if any, MUST be arrays. Elements in each array, if any, MUST be strings, and MUST be unique.
This keyword specifies properties that are required if a specific other property is present. Their requirement is dependent on the presence of the other property.
Validation succeeds if, for each name that appears in both the instance and as a name within this keyword's value, every item in the corresponding array is also the name of a property in the instance.
Omitting this keyword has the same behavior as an empty object.
Structural validation alone may be insufficient to allow an application to
correctly utilize certain values. The format
annotation keyword is defined to
allow schema authors to convey semantic information for a fixed subset of values
which are accurately described by authoritative resources, be they RFCs or other
external specifications. Format values defined externally to this document
SHOULD also be based on such authoritative resources in order to foster
interoperability.
The value of this keyword MUST be a string. While this keyword can validate any type, each distinct value will generally only validate a given set of instance types. If the type of the instance to validate is not in this set, validation for this keyword SHOULD succeed. All format values defined in this section apply to strings, but a format value can be specified to apply to any instance types defined in the data model defined in the core JSON Schema specification1.
Implementations SHOULD provide assertion behavior for the format values defined by this document2 and MUST refuse to process any schema which contains a format value it doesn't support.
In addition to the assertion behavior, this keyword also produces its value as an annotation.
Implementations:
- SHOULD provide validation for each format attribute defined in this document;
- MAY support format values not defined in this document, but such support MUST be configurable and disabled by default;
- SHOULD use a common parsing library or a well-known regular expression for each format;
- SHOULD clearly document how and to what degree each format attribute is validated.
The requirement for validation of format values in general is limited to syntactic checking; implementations SHOULD NOT attempt to send an email, connect to a URL, or otherwise check the existence of an entity identified by a format instance.
Implementations MAY support custom format values. Save for agreement between parties, schema authors SHALL NOT expect a peer implementation to support such custom format values.
These attributes apply to string instances.
Date and time format names are derived from RFC 3339, section 5.6. The duration format is from the ISO 8601 ABNF as given in Appendix A of RFC 3339.
- date-time: A string instance is valid against this attribute if it is a valid representation according to the "date-time" ABNF rule (referenced above)
- date: A string instance is valid against this attribute if it is a valid representation according to the "full-date" ABNF rule (referenced above)
- time: A string instance is valid against this attribute if it is a valid representation according to the "full-time" ABNF rule (referenced above)
- duration: A string instance is valid against this attribute if it is a valid representation according to the "duration" ABNF rule (referenced above)
Implementations MAY support additional attributes using the other format names defined anywhere in that RFC. Implementations SHOULD NOT define extension attributes with any name matching an RFC 3339 format unless it validates according to the rules of that format.3
These attributes apply to string instances.
A string instance is valid against these format values if it is a valid Internet email address as follows:
- email: As defined by the "Mailbox" ABNF rule in RFC 5321, section 4.1.2.
- idn-email: As defined by the extended "Mailbox" ABNF rule in RFC 6531, section 3.3. Note that all strings valid against the "email" attribute are also valid against the "idn-email" attribute.
These attributes apply to string instances.
A string instance is valid against these attributes if it is a valid representation for an Internet hostname as follows:
- hostname: As defined by RFC 1123, section 2.1, including host names produced using the Punycode algorithm specified in RFC 5891, section 4.4.
- idn-hostname: As defined by either RFC 1123 as for hostname, or an internationalized hostname as defined by RFC 5890, section 2.3.2.3. Note that all strings valid against the "hostname" attribute are also valid against the "idn-hostname" attribute.
These attributes apply to string instances.
A string instance is valid against these attributes if it is a valid representation of an IP address as follows:
- ipv4: An IPv4 address according to the "dotted-quad" ABNF syntax as defined in RFC 2673, section 3.2.
- ipv6: An IPv6 address as defined in RFC 4291, section 2.2.
- uri: A string instance is valid against this attribute if it is a valid IRI, according to RFC3987.
- uri-reference: A string instance is valid against this attribute if it is a valid URI Reference (either a URI or a relative-reference), according to RFC3986.
- iri: A string instance is valid against this attribute if it is a valid IRI, according to RFC3987.
- iri-reference: A string instance is valid against this attribute if it is a valid IRI Reference (either an IRI or a relative-reference), according to RFC3987.
- uuid: A string instance is valid against this attribute if it is a valid string representation of a UUID, according to RFC4122.
Note that all valid URIs are valid IRIs, and all valid URI References are also valid IRI References.
Note also that the "uuid" format is for plain UUIDs, not UUIDs in URNs. An example is "f81d4fae-7dec-11d0-a765-00a0c91e6bf6". For UUIDs as URNs, use the "uri" format, with a "pattern" regular expression of "^urn:uuid:" to indicate the URI scheme and URN namespace.
This attribute applies to string instances.
A string instance is valid against this attribute if it is a valid URI Template (of any level), according to RFC6570.
Note that URI Templates may be used for IRIs; there is no separate IRI Template specification.
These attributes apply to string instances.
- json-pointer: A string instance is valid against this attribute if it is a valid JSON string representation of a JSON Pointer, according to RFC 6901, section 5.
- relative-json-pointer: A string instance is valid against this attribute if
it is a valid Relative JSON Pointer. To allow for
both absolute and relative JSON Pointers, use
anyOf
oroneOf
to indicate support for either format.
This attribute applies to string instances.
A regular expression, which SHOULD be valid according to the ECMA-262 regular expression dialect.
Implementations that validate formats MUST accept at least the subset of ECMA-262 defined in {{regexinterop}}, and SHOULD accept all valid ECMA-262 expressions.
Annotations defined in this section indicate that an instance contains non-JSON data encoded in a JSON string.
These properties provide additional information required to interpret JSON data as rich multimedia documents. They describe the type of content, how it is encoded, and/or how it may be validated. They do not function as validation assertions; a malformed string-encoded document MUST NOT cause the containing instance to be considered invalid.
Due to security and performance concerns, as well as the open-ended nature of possible content types, implementations MUST NOT automatically decode, parse, and/or validate the string contents. Applications are expected to use these annotations to invoke the appropriate libraries separately.
All keywords in this section apply only to strings, and have no effect on other data types.
If the instance value is a string, this property defines that the string SHOULD be interpreted as encoded binary data and applications wishing to decode it SHOULD do so using the encoding named by this property.
Possible values indicating base 16, 32, and 64 encodings with several variations are listed in RFC 4648. Additionally, sections 6.7 and 6.8 of RFC 2045 provide encodings used in MIME. This keyword is derived from MIME's Content-Transfer-Encoding header, which was designed to map binary data into ASCII characters. It is not related to HTTP's Content-Encoding header, which is used to encode (e.g. compress or encrypt) the content of HTTP request and responses.
As "base64" is defined in both RFCs, the definition from RFC 4648 SHOULD be assumed unless the string is specifically intended for use in a MIME context. Note that all of these encodings result in strings consisting only of 7-bit ASCII characters. Therefore, this keyword has no meaning for strings containing characters outside of that range.
If this keyword is absent, but contentMediaType
is present, this indicates
that the encoding is the identity encoding, meaning that no transformation was
needed in order to represent the content in a UTF-8 string.
The value of this property MUST be a string.
If the instance is a string, this property indicates the media type of the
contents of the string. If contentEncoding
is present, this property describes
the decoded string.
The value of this property MUST be a string, which MUST be a media type, as defined by RFC 2046.
If the instance is a string, and if contentMediaType
is present, this property
contains a schema which describes the structure of the string.
This keyword MAY be used with any media type that can be mapped into JSON Schema's data model. Specifying such mappings is outside of the scope of this specification.
The value of this property MUST be a valid JSON schema. It SHOULD be ignored if
contentMediaType
is not present. Accessing the schema through the schema
location IRI included as part of the annotation will ensure that it is correctly
processed as a subschema. Using the extracted annotation value directly is only
safe if the schema is an embedded resource with both $schema
and an
absolute IRI $id
.
Here is an example schema, illustrating the use of contentEncoding
and
contentMediaType
:
{
"type": "string",
"contentEncoding": "base64",
"contentMediaType": "image/png"
}
Instances described by this schema are expected to be strings, and their values should be interpretable as base64-encoded PNG images.
Another example:
{
"type": "string",
"contentMediaType": "text/html"
}
Instances described by this schema are expected to be strings containing HTML, using whatever character set the JSON string was decoded into. Per section 8.1 of RFC 8259, outside of an entirely closed system, this MUST be UTF-8.
This example describes a JWT that is MACed using the HMAC SHA-256 algorithm, and requires the "iss" and "exp" fields in its claim set.
{
"type": "string",
"contentMediaType": "application/jwt",
"contentSchema": {
"type": "array",
"minItems": 2,
"prefixItems": [
{
"const": {
"typ": "JWT",
"alg": "HS256"
}
},
{
"type": "object",
"required": ["iss", "exp"],
"properties": {
"iss": {"type": "string"},
"exp": {"type": "integer"}
}
}
]
}
}
Note that contentEncoding
does not appear. While the application/jwt
media
type makes use of base64url encoding, that is defined by the media type, which
determines how the JWT string is decoded into a list of two JSON data
structures: first the header, and then the payload. Since the JWT media type
ensures that the JWT can be represented in a JSON string, there is no need for
further encoding or decoding.
These general-purpose annotation keywords provide commonly used information for documentation and user interface display purposes. They are not intended to form a comprehensive set of features. Rather, additional keywords can be defined for more complex annotation-based applications.
The value of both of these keywords MUST be a string.
Both of these keywords can be used to decorate a user interface with information about the data produced by this user interface. A title will preferably be short, whereas a description will provide explanation about the purpose of the instance described by this schema.
There are no restrictions placed on the value of this keyword. When multiple occurrences of this keyword are applicable to a single sub-instance, implementations SHOULD remove duplicates.
This keyword can be used to supply a default JSON value associated with a particular schema. It is RECOMMENDED that a default value be valid against the associated schema.
The value of this keyword MUST be a boolean. When multiple occurrences of this
keyword are applicable to a single sub-instance, applications SHOULD consider
the instance location to be deprecated if any occurrence specifies a true
value.
If deprecated
has a value of boolean true
, it indicates that applications
SHOULD refrain from usage of the declared property. It MAY mean the property is
going to be removed in the future.
A root schema containing deprecated
with a value of true
indicates that the
entire resource being described MAY be removed in the future.
The deprecated
keyword applies to each instance location to which the schema
object containing the keyword successfully applies. This can result in scenarios
where every array item or object property is deprecated even though the
containing array or object is not.
Omitting this keyword has the same behavior as a value of false
.
The value of these keywords MUST be a boolean. When multiple occurrences of
these keywords are applicable to a single sub-instance, the resulting behavior
SHOULD be as for a true
value if any occurrence specifies a true
value, and
SHOULD be as for a false
value otherwise.
If readOnly
has a value of boolean true
, it indicates that the
corresponding value in the instance is
managed exclusively by the owning authority, and attempts by an
application to modify the value are expected to be ignored or
rejected by that owning authority.
An instance document that is marked as readOnly
for the entire document MAY be
ignored if sent to the owning authority, or MAY result in an error, at the
authority's discretion.
If writeOnly
has a value of boolean true
, it indicates that the value is
never present when the instance is retrieved from the owning authority. It can
be present when sent to the owning authority to update or create the document
(or the resource it represents), but it will not be included in any updated or
newly created version of the instance.
An instance document that is marked as writeOnly
for the entire document MAY
be returned as a blank document of some sort, or MAY produce an error upon
retrieval, or have the retrieval request ignored, at the authority's discretion.
For example, readOnly
would be used to mark a database-generated serial number
as read-only, while writeOnly
would be used to mark a password input field.
These keywords can be used to assist in user interface instance generation. In particular, an application MAY choose to use a widget that hides input values as they are typed for write-only fields.
Omitting these keywords has the same behavior as values of false
.
The value of this keyword MUST be an array. There are no restrictions placed on the values within the array. When multiple occurrences of this keyword are applicable to a single sub-instance, implementations MUST provide a flat array of all values rather than an array of arrays.
This keyword can be used to provide sample JSON values associated with a particular schema, for the purpose of illustrating usage. It is RECOMMENDED that these values be valid against the associated schema.
Implementations MAY use the value(s) of default
, if present, as an additional
example. If examples
is absent, default
MAY still be used in this manner.
JSON Schema Validation assumes all the security considerations listed in the JSON Schema Core specification.
JSON Schema Validation allows the use of Regular Expressions, which have numerous different (often incompatible) implementations. Some implementations allow the embedding of arbitrary code, which is outside the scope of JSON Schema and MUST NOT be permitted. Regular expressions can often also be crafted to be extremely expensive to compute (with so-called "catastrophic backtracking"), resulting in a denial-of-service attack.
Implementations that support validating or otherwise evaluating instance string
data based on contentEncoding
and/or contentMediaType
are at risk of
evaluating data in an unsafe way based on misleading information. Applications
can mitigate this risk by only performing such processing when a relationship
between the schema and instance is established (e.g., they share the same
authority).
Processing a media type or encoding is subject to the security considerations of that media type or encoding. For example, the security considerations of RFC 4329 Scripting Media Types apply when processing JavaScript or ECMAScript encoded within a JSON string.
Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997, <https://www.rfc-editor.org/info/rfc2119>.
Braden, R., Ed., "Requirements for Internet Hosts - Application and Support", STD 3, RFC 1123, DOI 10.17487/RFC1123, October 1989, <https://www.rfc-editor.org/info/rfc1123>.
Freed, N. and N. Borenstein, "Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet Message Bodies", RFC 2045, DOI 10.17487/RFC2045, November 1996, <https://www.rfc-editor.org/info/rfc2045>.
Freed, N. and N. Borenstein, "Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types", RFC 2046, DOI 10.17487/RFC2046, November 1996, <https://www.rfc-editor.org/info/rfc2046>.
Crawford, M., "Binary Labels in the Domain Name System", RFC 2673, DOI 10.17487/RFC2673, August 1999, <https://www.rfc-editor.org/info/rfc2673>.
Klyne, G. and C. Newman, "Date and Time on the Internet: Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002, <https://www.rfc-editor.org/info/rfc3339>.
Berners-Lee, T., Fielding, R., and L. Masinter, "Uniform Resource Identifier (URI): Generic Syntax", STD 66, RFC 3986, DOI 10.17487/RFC3986, January 2005, <https://www.rfc-editor.org/info/rfc3986>.
Duerst, M. and M. Suignard, "Internationalized Resource Identifiers (IRIs)", RFC 3987, DOI 10.17487/RFC3987, January 2005, <https://www.rfc-editor.org/info/rfc3987>.
Leach, P., Mealling, M., and R. Salz, "A Universally Unique IDentifier (UUID) URN Namespace", RFC 4122, DOI 10.17487/RFC4122, July 2005, <https://www.rfc-editor.org/info/rfc4122>.
Hinden, R. and S. Deering, "IP Version 6 Addressing Architecture", RFC 4291, DOI 10.17487/RFC4291, February 2006, <https://www.rfc-editor.org/info/rfc4291>.
Josefsson, S., "The Base16, Base32, and Base64 Data Encodings", RFC 4648, DOI 10.17487/RFC4648, October 2006, <https://www.rfc-editor.org/info/rfc4648>.
Klensin, J., "Simple Mail Transfer Protocol", RFC 5321, DOI 10.17487/RFC5321, October 2008, <https://www.rfc-editor.org/info/rfc5321>.
Klensin, J., "Internationalized Domain Names for Applications (IDNA): Definitions and Document Framework", RFC 5890, DOI 10.17487/RFC5890, August 2010, <https://www.rfc-editor.org/info/rfc5890>.
Klensin, J., "Internationalized Domain Names in Applications (IDNA): Protocol", RFC 5891, DOI 10.17487/RFC5891, August 2010, <https://www.rfc-editor.org/info/rfc5891>.
Gregorio, J., Fielding, R., Hadley, M., Nottingham, M., and D. Orchard, "URI Template", RFC 6570, DOI 10.17487/RFC6570, March 2012, <https://www.rfc-editor.org/info/rfc6570>.
Yao, J. and W. Mao, "SMTP Extension for Internationalized Email", RFC 6531, DOI 10.17487/RFC6531, February 2012, <https://www.rfc-editor.org/info/rfc6531>.
Bryan, P., Ed., Zyp, K., and M. Nottingham, Ed., "JavaScript Object Notation (JSON) Pointer", RFC 6901, DOI 10.17487/RFC6901, April 2013, <https://www.rfc-editor.org/info/rfc6901>.
Bray, T., Ed., "The JavaScript Object Notation (JSON) Data Interchange Format", STD 90, RFC 8259, DOI 10.17487/RFC8259, December 2017, <https://www.rfc-editor.org/info/rfc8259>.
ECMA-262, 11th edition specification", June 2020, <https://www.ecma-international.org/ecma-262/11.0>.
Luff, G., Andrews, H., and B. Hutton, Ed., "Relative JSON Pointers", Work in Progress, Internet-Draft, draft-handrews-relative-json-pointer-01, December 2020, <https://datatracker.ietf.org/doc/html/draft-handrews-relative-json-pointer-01>.
Wright, A., Andrews, H., Hutton, B., and G. Dennis, "JSON Schema: A Media Type for Describing JSON Documents", Work in Progress, Internet-Draft, draft-bhutton-json-schema-01, June 2022, <https://datatracker.ietf.org/doc/html/draft-bhutton-json-schema-01>.
Hoehrmann, B., "Scripting Media Types", RFC 4329, DOI 10.17487/RFC4329, April 2006, <https://www.rfc-editor.org/info/rfc4329>.
Thanks to Gary Court, Francis Galiegue, Kris Zyp, Geraint Luff, and Henry Andrews for their work on the initial drafts of JSON Schema.
Thanks to Jason Desrosiers, Daniel Perrett, Erik Wilde, Evgeny Poberezkin, Brad Bowman, Gowry Sankar, Donald Pipowitch, Dave Finlay, Denis Laxalde, Phil Sturgeon, Shawn Silverman, and Karen Etheridge for their submissions and patches to the document.
%appendix% Change Log4
- draft-next
- Use IRIs instead of URIs
- Move "minContains" and "maxContains" to the applicator vocabulary (see also that changelog)
- Remove the optional automatic second-pass validation of "content*" keywords
- Clarify that "contentSchema"'s value is a schema just like any other subschema
- draft-bhutton-json-schema-validation-01
- Improve and clarify the
minContains
keyword explanation - Remove the use of "production" in favour of "ABNF rule"
- Improve and clarify the
- draft-bhutton-json-schema-validation-00
- Correct email format RFC reference to 5321 instead of 5322
- Clarified the set and meaning of
contentEncoding
values - Reference ECMA-262, 11th edition for regular expression support
- Split
format
into an annotation only vocabulary and an assertion vocabulary - Clarify
deprecated
when applicable to arrays
- draft-handrews-json-schema-validation-02
- Grouped keywords into formal vocabularies
- Update
format
implementation requirements in terms of vocabularies - By default,
format
MUST NOT be validated, although validation can be enabled - A vocabulary declaration can be used to require
format
validation - Moved
definitions
to the core spec as$defs
- Moved applicator keywords to the core spec
- Renamed the array form of
dependencies
todependentRequired
, moved the schema form to the core spec - Specified all
content*
keywords as annotations, not assertions - Added
contentSchema
to allow applying a schema to a string-encoded document - Also allow RFC 4648 encodings in
contentEncoding
- Added
minContains
andmaxContains
- Update RFC reference for nhostname" and "idn-hostname"
- Add "uuid" and "duration" formats
- draft-handrews-json-schema-validation-01
- This draft is purely a clarification with no functional changes
- Provided the general principle behind ignoring annotations under
not
and similar cases - Clarified
if
/then
/else
validation interactions - Clarified
if
/then
/else
behavior for annotation - Minor formatting and cross-referencing improvements
- draft-handrews-json-schema-validation-00
- Added
if
/then
/else
- Classify keywords as assertions or annotations per the core spec
- Warn of possibly removing
dependencies
in the future - Grouped validation keywords into sub-sections for readability
- Moved
readOnly
from hyper-schema to validation meta-data - Added
writeOnly
- Added string-encoded media section, with former hyper-schema
media
keywords - Restored "regex" format (removal was unintentional)
- Added "date" and "time" formats, and reserved additional RFC 3339 format names
- I18N formats: "iri", "iri-reference", "idn-hostname", "idn-email"
- Clarify that "json-pointer" format means string encoding, not URI fragment
- Fixed typo that inverted the meaning of
minimum
andexclusiveMinimum
- Move format syntax references into Normative References
- JSON is a normative requirement
- Added
- draft-wright-json-schema-validation-01
- Standardized on hyphenated format names with full words ("uriref" becomes "uri-reference")
- Add the formats "uri-template" and "json-pointer"
- Changed
exclusiveMaximum
/exclusiveMinimum
from boolean modifiers ofmaximum
/minimum
to independent numeric fields. - Split the additionalItems/items into two sections
- Reworked properties/patternProperties/additionalProperties definition
- Added
examples
keyword - Added
contains
keyword - Allow empty
required
anddependencies
arrays - Fixed
type
reference to primitive types - Added
const
keyword - Added
propertyNames
keyword
- draft-wright-json-schema-validation-00
- Added additional security considerations
- Removed reference to "latest version" meta-schema, use numbered version instead
- Rephrased many keyword definitions for brevity
- Added "uriref" format that also allows relative URI references
- draft-fge-json-schema-validation-00
- Initial draft.
- Salvaged from draft v3.
- Redefine the
required
keyword. - Remove
extends
,disallow
- Add
anyOf
,allOf
,oneOf
,not
,definitions
,minProperties
,maxProperties
. dependencies
member values can no longer be single strings; at least one element is required in a property dependency array.- Rename
divisibleBy
tomultipleOf
. type
arrays can no longer have schemas; removeany
as a possible value.- Rework the
format
section; make support optional. - `format": remove attributes "phone", "style", "color"; rename "ip-address" to "ipv4"; add references for all attributes.
- Provide algorithms to calculate schema(s) for array/object instances.
- Add interoperability considerations.
Author | Company | URI | |
---|---|---|---|
Austin Wright (editor) | aaa@bzfx.net | ||
Ben Hutton (editor) | Postman | ben@jsonschema.dev | https://jsonschema.dev |
Footnotes
-
Note that the
type
keyword in this specification defines an "integer" type which is not part of the data model. Therefore a format attribute can be limited to numbers, but not specifically to integers. However, a numeric format can be used alongside thetype
keyword with a value of "integer", or it could be explicitly defined to always pass if the number is not an integer, which produces essentially the same behavior as only applying to integers. ↩ -
Assertion behavior is called out very explicitly because it is a departure from previous iterations of this specification. Previously,
format
was an annotation-only keyword by default and implementations that supported assertion were required to offer some configuration that allowed users to explicitly enable assertion. Assertion is now a requirement in order to meet user expectations. See json-schema-org/json-schema-spec #1520 for more. ↩ -
There is not currently consensus on the need for supporting all RFC 3339 formats, so this approach of reserving the namespace will encourage experimentation without committing to the entire set. Either the format implementation requirements will become more flexible in general, or these will likely either be promoted to fully specified attributes or dropped. ↩
-
This section to be removed before leaving Internet-Draft status. ↩